OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3054–3062

Engineered surface Bloch waves in graphene-based hyperbolic metamaterials

Yuanjiang Xiang, Jun Guo, Xiaoyu Dai, Shuangchun Wen, and Dingyuan Tang  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3054-3062 (2014)
http://dx.doi.org/10.1364/OE.22.003054


View Full Text Article

Enhanced HTML    Acrobat PDF (2138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A kind of tunable hyperbolic metamaterial (HMM) based on the graphene-dielectric layered structure at near-infrared frequencies is presented, and the engineered surface Bloch waves between graphene-based HMM and isotropic medium are investigated. Our calculations demonstrate that the frequency and frequency range of surface Bloch waves existence can be tuned by varying the Fermi energy of graphene sheets via electrostatic biasing. Moreover, we show that the frequency range of surface Bloch waves existence can be broadened by decreasing the thickness of the dielectric in the graphene-dielectric layered structure or by increasing the layer number of graphene sheets.

© 2014 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: November 26, 2013
Revised Manuscript: January 15, 2014
Manuscript Accepted: January 17, 2014
Published: February 3, 2014

Citation
Yuanjiang Xiang, Jun Guo, Xiaoyu Dai, Shuangchun Wen, and Dingyuan Tang, "Engineered surface Bloch waves in graphene-based hyperbolic metamaterials," Opt. Express 22, 3054-3062 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3054


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. E. Sernelius, Surface Modes in Physics (John Wiley, 2001).
  2. J. A. Polo and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photonics Rev.5(2), 234–246 (2011). [CrossRef]
  3. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  4. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3–4), 131–314 (2005). [CrossRef]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  6. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007). [CrossRef]
  7. P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am.67(4), 423–438 (1977). [CrossRef]
  8. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface-waves in periodic layered media,” Appl. Phys. Lett.32(2), 104–105 (1978). [CrossRef]
  9. T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett.96(15), 151101 (2010). [CrossRef]
  10. E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett.90(24), 241116 (2007). [CrossRef]
  11. F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch Surface Waves based sensors,” Opt. Express18(8), 8087–8093 (2010). [CrossRef] [PubMed]
  12. M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett.91(25), 253125 (2007). [CrossRef]
  13. Y. H. Wan, Z. Zheng, W. J. Kong, X. Zhao, Y. Liu, Y. S. Bian, and J. S. Liu, “Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave,” Opt. Express20(8), 8998–9003 (2012). [CrossRef] [PubMed]
  14. S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013). [CrossRef]
  15. S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric supperlattices,” Appl. Phys. Lett.95(4), 041902 (2009). [CrossRef]
  16. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett.90(7), 077405 (2003). [CrossRef] [PubMed]
  17. Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010). [CrossRef]
  18. T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett.100(16), 161103 (2012). [CrossRef]
  19. M. A. Noginov, A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94(15), 151105 (2009). [CrossRef]
  20. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett.35(11), 1863–1865 (2010). [CrossRef] [PubMed]
  21. C. Rizza, A. Ciattoni, E. Spinozzi, and L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic metamaterials,” Opt. Lett.37(16), 3345–3347 (2012). [CrossRef] [PubMed]
  22. G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi4, 295–297 (2010).
  23. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6(12), 946–950 (2007). [CrossRef] [PubMed]
  24. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science321(5891), 930 (2008). [CrossRef] [PubMed]
  25. Z. Jacob, I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett.100(18), 181105 (2012). [CrossRef]
  26. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  27. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  28. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  29. Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett.37(14), 2907–2909 (2012). [CrossRef] [PubMed]
  30. S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012). [CrossRef] [PubMed]
  31. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009). [CrossRef]
  32. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6(11), 749–758 (2012). [CrossRef]
  33. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011). [CrossRef] [PubMed]
  34. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B87(7), 075416 (2013). [CrossRef]
  35. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express21(6), 7614–7632 (2013). [CrossRef] [PubMed]
  36. K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based metamaterials,” Appl. Phys. Lett.103(2), 023107 (2013). [CrossRef]
  37. I. S. Nefedov, C. A. Valaginnopoulos, and L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt.15(11), 114003 (2013). [CrossRef]
  38. T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express21(18), 20888–20899 (2013). [CrossRef] [PubMed]
  39. B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express21(14), 17089–17096 (2013). [CrossRef] [PubMed]
  40. C. J. Zapata-Rodríguez, J. J. Miret, S. Vuković, and M. R. Belić, “Engineered surface waves in hyperbolic metamaterials,” Opt. Express21(16), 19113–19127 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited