OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3075–3088

Asymmetric transmission of terahertz waves using polar dielectrics

Andriy E. Serebryannikov, Ekmel Ozbay, and Shunji Nojima  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3075-3088 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1342 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Asymmetric wave transmission is a Lorentz reciprocal phenomenon, which can appear in the structures with broken symmetry. It may enable high forward-to-backward transmittance contrast, while transmission for one of the two opposite incidence directions is blocked. In this paper, it is demonstrated that ultrawideband, high-contrast asymmetric wave transmission can be obtained at terahertz frequencies in the topologically simple, i.e., one- or two-layer nonsymmetric gratings, which are entirely or partially made of a polar dielectric working in the ultralow- ε regime inspired by phonon-photon coupling. A variety of polar dielectrics with different characteristics can be used that gives one a big freedom concerning design. Simple criteria for estimating possible usefulness of a certain polar dielectric are suggested. Contrasts exceeding 80dB can be easily achieved without a special parameter adjustment. Stacking a high- ε corrugated layer with a noncorrugated layer made of a polar dielectric, one can enhance transmission in the unidirectional regime. At large and intermediate angles of incidence, a better performance can be obtained owing to the common effect of nonsymmetric diffractions and directional selectivity, which is connected with the dispersion of the ultralow- ε material. At normal incidence, strong asymmetry in transmission may occur in the studied structures as a purely diffraction effect.

© 2014 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(050.1970) Diffraction and gratings : Diffractive optics
(120.7000) Instrumentation, measurement, and metrology : Transmission
(160.4670) Materials : Optical materials

ToC Category:
Terahertz Optics

Original Manuscript: December 2, 2013
Revised Manuscript: January 20, 2014
Manuscript Accepted: January 21, 2014
Published: February 3, 2014

Andriy E. Serebryannikov, Ekmel Ozbay, and Shunji Nojima, "Asymmetric transmission of terahertz waves using polar dielectrics," Opt. Express 22, 3075-3088 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Lockyear, A. P. Hibbins, K. R. White, J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 74(5), 056611 (2006). [CrossRef] [PubMed]
  2. A. E. Serebryannikov, E. Ozbay, “Unidirectional transmission in non-symmetric gratings containing metallic layers,” Opt. Express 17(16), 13335–13345 (2009). [CrossRef] [PubMed]
  3. A. E. Serebryannikov, A. O. Cakmak, E. Ozbay, “Multichannel optical diode with unidirectional diffraction relevant total transmission,” Opt. Express 20(14), 14980–14990 (2012). [CrossRef] [PubMed]
  4. X.-B. Kang, W. Tan, Z.-S. Wang, Z.-G. Wang, H. Cheng, “High-efficiency one-way transmission by one-dimensional photonic crystal with gratings on one side,” Chin. Phys. Lett. 27(7), 074204 (2010). [CrossRef]
  5. M. Stolarek, D. Yavorskiy, R. Kotyński, C. J. Zapata Rodríguez, J. Łusakowski, T. Szoplik, “Asymmetric transmission of terahertz radiation through a double grating,” Opt. Lett. 38(6), 839–841 (2013). [CrossRef] [PubMed]
  6. A. Cicek, M. B. Yucel, O. A. Kaya, B. Ulug, “Refraction-based photonic crystal diode,” Opt. Lett. 37(14), 2937–2939 (2012). [CrossRef] [PubMed]
  7. S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, E. Ozbay, “Spoof-plasmon relevant one-way collimation and multiplexing at beaming from a slit in metallic grating,” Opt. Express 20(24), 26636–26648 (2012). [CrossRef] [PubMed]
  8. V. Liu, D. A. B. Miller, S. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express 20(27), 28388–28397 (2012). [CrossRef] [PubMed]
  9. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013). [CrossRef]
  10. S. Xu, C. Qiu, Z. Liu, “Acoustic transmission through asymmetric grating structures made of cylinders,” J. Appl. Phys. 111(9), 094505 (2012). [CrossRef]
  11. A. E. Serebryannikov, E. Ozbay, “One-way Rayleigh-Wood anomalies and tunable narrowband transmission in photonic crystal gratings with broken structural symmetry,” Phys. Rev. A 87(5), 053804 (2013). [CrossRef]
  12. A. E. Serebryannikov, K. B. Alici, T. Magath, A. O. Cakmak, E. Ozbay, “Asymmetric Fabry-Perot-type transmission in photonic-crystal gratings with one-sided corrugations at a two-way coupling,” Phys. Rev. A 86(5), 053835 (2012). [CrossRef]
  13. M. Beruete, A. E. Serebryannikov, V. Torres, M. Navarro-Cia, M. Sorolla, “Toward compact millimeter-wave diode in thin stacked-hole array assisted by a dielectric grating,” Appl. Phys. Lett. 99(15), 154101 (2011). [CrossRef]
  14. M. Mutlu, S. Cakmakyapan, A. E. Serebryannikov, E. Ozbay, “One-way reciprocal spoof surface plasmons and relevant reversible diodelike beaming,” Phys. Rev. B 87(20), 205123 (2013). [CrossRef]
  15. W.-M. Ye, X.-D. Yuan, C. C. Guo, C. Zen, “Unidirectional transmission in non-symmetric gratings made of isotropic material,” Opt. Express 18(8), 7590–7595 (2010). [CrossRef] [PubMed]
  16. A. E. Serebryannikov, T. Magath, K. Schuenemann, O. Y. Vasylchenko, “Scattering of s-polarized plane waves by finite-thickness periodic structures made of ultralow-permittivity metamaterials,” Phys. Rev. B 73(11), 115111 (2006). [CrossRef]
  17. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009). [CrossRef]
  18. C. Wang, X.-L. Zhong, Z.-Y. Li, “Linear and passive silicon optical isolator,” Sci. Rep. 2, 674 (2012). [PubMed]
  19. J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, Y. Y. Kim, “Inverted bi-prism phononic crystals for one-sided elastic wave transmission applications,” Appl. Phys. Lett. 100(21), 213503 (2012). [CrossRef]
  20. E. Colak, A. E. Serebryannikov, A. O. Cakmak, E. Ozbay, “Experimental study of broadband unidirectional splitting in photonic crystal gratings with broken structural symmetry,” Appl. Phys. Lett. 102(15), 151105 (2013). [CrossRef]
  21. A. E. Serebryannikov, E. Colak, A. O. Cakmak, E. Ozbay, “Dispersion irrelevant wideband asymmetric transmission in dielectric photonic crystal gratings,” Opt. Lett. 37(23), 4844–4846 (2012). [CrossRef] [PubMed]
  22. B. T. Schwartz, R. Piestun, “Total external reflection from metamaterials with ultralow refractive index,” J. Opt. Soc. Am. B 20(12), 2448–2453 (2003). [CrossRef]
  23. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70(4), 046608 (2004). [CrossRef] [PubMed]
  24. A. Alù, M. G. Silveirinha, A. Salandrino, N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007). [CrossRef]
  25. C. Kittel, Introduction to Solid State Physics (John Wiley, 2005).
  26. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, K. M. Ho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B Condens. Matter 49(16), 11080–11087 (1994). [CrossRef] [PubMed]
  27. S. Foteinopoulou, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84(3), 035128 (2011). [CrossRef]
  28. K. C. Huang, M. L. Povinelli, J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett. 85(4), 543–545 (2004). [CrossRef]
  29. P. B. Catrysse, S. Fan, “Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films,” Phys. Rev. B 75(7), 075422 (2007). [CrossRef]
  30. A. Rung, C. G. Ribbing, M. Qiu, “Gap maps for triangular photonic crystals with a dispersive and absorbing component,” Phys. Rev. B 72(20), 205120 (2005). [CrossRef]
  31. S. Nojima, “Excitonic polaritons in one-dimensional photonic crystals,” Phys. Rev. B 57(4), R2057–R2060 (1998). [CrossRef]
  32. S. Nojima, “Photonic-crystal laser mediated by polaritons,” Phys. Rev. B 61(15), 9940–9943 (2000). [CrossRef]
  33. A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, S. G. Tikhodeev, T. Fujita, T. Ishihara, “Polariton effect in distributed feedback microcavities,” J. Phys. Soc. Jpn. 70(4), 1137–1144 (2001). [CrossRef]
  34. M. V. Erementchouk, L. I. Deych, A. A. Lisyansky, “Spectral properties of exciton polaritons in one-dimensional resonant photonic crystals,” Phys. Rev. B 73(11), 115321 (2006). [CrossRef]
  35. S. Nojima, “Optical response of excitonic polaritons in photonic crystals,” Phys. Rev. B 59(8), 5662–5677 (1999). [CrossRef]
  36. T. Magath, A. E. Serebryannikov, “Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs,” J. Opt. Soc. Am. A 22(11), 2405–2418 (2005). [CrossRef] [PubMed]
  37. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  38. P. Rodríguez-Ulibarri, M. Beruete, M. Navarro-Cia, A. E. Serebryannikov, “Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures,” Phys. Rev. B 88(16), 165137 (2013). [CrossRef]
  39. R. Petit, ed., Electromagnetic Theory of Gratings (Springer, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited