OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3089–3097

Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths

Jassem Safioui, François Leo, Bart Kuyken, Simon-Pierre Gorza, Shankar Kumar Selvaraja, Roel Baets, Philippe Emplit, Gunther Roelkens, and Serge Massar  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3089-3097 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1300 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report supercontinuum (SC) generation centered on the telecommunication C-band (1550 nm) in CMOS compatible hydrogenated amorphous silicon waveguides. A broadening of more than 550 nm is obtained in 1cm long waveguides of different widths using as pump picosecond pulses with on chip peak power as low as 4 W.

© 2014 Optical Society of America

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Integrated Optics

Original Manuscript: December 3, 2013
Revised Manuscript: January 17, 2014
Manuscript Accepted: January 20, 2014
Published: February 3, 2014

Jassem Safioui, François Leo, Bart Kuyken, Simon-Pierre Gorza, Shankar Kumar Selvaraja, Roel Baets, Philippe Emplit, Gunther Roelkens, and Serge Massar, "Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths," Opt. Express 22, 3089-3097 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Alfano, The Supercontinuum Laser Source, 2d ed., New York (Springer, 2006).
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  3. E. A. De Souza, M. C. Nuss, W. H. Knox, and D. A. B. Miller, “Wavelength-division multiplexing with femtosecond pulses,” Opt. Lett.20(10), 1166–1168 (1995). [CrossRef] [PubMed]
  4. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  5. H. Kano and H. O. Hamaguchi, “Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express13(4), 1322–1327 (2005). [CrossRef] [PubMed]
  6. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express16(19), 14938–14944 (2008). [CrossRef] [PubMed]
  7. D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express18(2), 923–930 (2010). [CrossRef] [PubMed]
  8. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultra broadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett.37(10), 1685–1687 (2012). [CrossRef] [PubMed]
  9. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett.32(4), 391–393 (2007). [CrossRef] [PubMed]
  10. I. W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express15(23), 15242–15249 (2007). [CrossRef] [PubMed]
  11. A. Demircan and U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation,” Appl. Phys. B86(1), 31–39 (2006). [CrossRef]
  12. P. Baldeck and R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol.5(12), 1712–1715 (1987). [CrossRef]
  13. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011). [CrossRef] [PubMed]
  14. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express18(6), 5668–5673 (2010). [CrossRef] [PubMed]
  15. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express18(9), 8998–9005 (2010). [CrossRef] [PubMed]
  16. J. Matres, G. C. Ballesteros, P. Gautier, J. M. Fédéli, J. Martí, and C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express21(4), 3932–3940 (2013). [CrossRef] [PubMed]
  17. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express20(20), 22609–22615 (2012). [CrossRef] [PubMed]
  18. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36(4), 552–554 (2011). [CrossRef] [PubMed]
  19. K. Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett.37(8), 1331–1333 (2012). [CrossRef] [PubMed]
  20. U. D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, “Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source,” Opt. Express21, 32032 (2013).
  21. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19(26), B146–B153 (2011). [CrossRef] [PubMed]
  22. A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron.16(7), 694–697 (1980). [CrossRef]
  23. T. Deschaines, J. Hodkiewicz, P. Henson, “Characterization of amorphous and microcrystalline silicon using raman spectroscopy” Thermo Fisher Scientific, Madison, WI, USA.
  24. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51(3), 2602–2607 (1995). [CrossRef] [PubMed]
  25. I. W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express14(25), 12380–12387 (2006). [CrossRef] [PubMed]
  26. X. Chen, N. C. Panoiu, I. W. Hsieh, J. I. Dadap, and R. M. Osgood, “Third-order dispersion and ultrafast-pulse propagation in silicon wire waveguides,” IEEE Photon. Technol. Lett18(24), 2617–2619 (2006). [CrossRef]
  27. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, “Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,” Opt. Express12(13), 2838–2843 (2004). [CrossRef] [PubMed]
  28. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express17(24), 21497–21508 (2009). [CrossRef] [PubMed]
  29. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett.31(4), 292–294 (1977). [CrossRef]
  30. M. Stutzmann, W. B. Jackson, and C. C. Tsai, “Kinetics of the Staebler–Wronski effect in hydrogenated amorphous silicon,” Appl. Phys. Lett.45(10), 1075–1077 (1984). [CrossRef]
  31. G. P. Agrawal, Nonlinear fiber optics, Optics and Photonics, 3rd ed. (San Diego Elsevier, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited