OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3098–3104

Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures

Haitan Xu, Mohammad Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Zeeshan Ahmed  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3098-3104 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1226 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Resistance thermometry provides a time-tested method for taking temperature measurements. However, fundamental limits to resistance-based approaches has produced considerable interest in developing photonic temperature sensors to leverage advances in frequency metrology and to achieve greater mechanical and environmental stability. Here we show that silicon-based optical ring resonator devices can resolve temperature differences of 1 mK using the traditional wavelength scanning methodology. An even lower noise floor of 80 μK for measuring temperature difference is achieved in the side-of-fringe, constant power mode measurement.

© 2014 Optical Society of America

OCIS Codes
(000.0000) General : General
(000.2700) General : General science

ToC Category:

Original Manuscript: December 5, 2013
Revised Manuscript: January 10, 2014
Manuscript Accepted: January 19, 2014
Published: February 3, 2014

Haitan Xu, Mohammad Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Zeeshan Ahmed, "Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures," Opt. Express 22, 3098-3104 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. X. Woo, Z. K. Nagy, R. B. H. Tan, R. D. Braatz, “Adaptive concentration control of cooling and antisolvent crystalllization with laser backscattering measurement,” Cryst. Growth Des. 9, 182–191 (2009).
  2. M. R. Pinsky, L. Brochard, J. Mancebo, and G. Hedenstierna, eds., Applied Physiology in Intensive Care Medicine (Springer, 2009).
  3. K. R. A. Wunderlich, On the Temperature in Diseases: A Manual of Medical Thermometry (The New Sydenham Society, 1868), Vol. XLIX.
  4. F. A. Jolesz, “MRI-guided focused ultrasound surgery,” Annu. Rev. Med. 60(1), 417–430 (2009). [CrossRef] [PubMed]
  5. H. W. S. III, HVAC Water Chillers and Cooling Towers (CRC Press Taylor & Francis Group, 2012).
  6. J. Turner, ed., Automotive Sensor, Sensors Technology (Momentum Press LLC, 2009).
  7. R. Price, “The Platinum resistance Thermometer,” Platin. Met. Rev. 3, 78–87 (1959).
  8. G. F. Strouse, “Standard Platinum Resistance Thermometer Calibrations fromthe Ar TP to the Ag FP,” NIST Special Publication 250–250–81 (2008).
  9. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012). [CrossRef] [PubMed]
  10. A. D. Kersey, T. A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” Photonics Technology Letters, IEEE 4(10), 1183–1185 (1992). [CrossRef]
  11. R. Yun-Jiang, D. J. Webb, D. A. Jackson, Z. Lin, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” Lightwave Technology, Journalism 15, 779–785 (1997).
  12. J. Hecht, Understanding Fiber Optics 4th ed. (Prentice Hall, 2002).
  13. D. A. Krohn, Fiber Optic Sensors: Fundamentals and Applications 3ed. (ISA, 2000).
  14. F. L. Walls, D. W. Allan, “Measurements of frequency stability,” Proc. IEEE 74(1), 162–168 (1986). [CrossRef]
  15. G. F. Strouse, “Sapphire whispering gallery thermometer,” Int. J. Thermophys. 28(6), 1812–1821 (2007). [CrossRef]
  16. W. W. Rigrod, “The optical ring resonator,” Bell Syst. Tech. J. 44(5), 907–916 (1965). [CrossRef]
  17. L. Stern, I. Goykhman, B. Desiatov, U. Levy, “Frequency locked micro disk resonator for real time and precise monitoring of refractive index,” Opt. Lett. 37(8), 1313–1315 (2012). [CrossRef] [PubMed]
  18. X. Tu, J. Song, T.-Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. Yu, G.-Q. Lo, “Thermal independent Silicon-Nitride slot waveguide biosensor with high sensitivity,” Opt. Express 20(3), 2640–2648 (2012). [CrossRef] [PubMed]
  19. M.-S. Kwon, W. H. Steier, “Microring-resonator-based sensor measuring both the concentration and temperature of a solution,” Opt. Express 16(13), 9372–9377 (2008). [CrossRef] [PubMed]
  20. B. Guha, B. B. C. Kyotoku, M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010). [CrossRef] [PubMed]
  21. B. Guha, K. Preston, M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37(12), 2253–2255 (2012). [CrossRef] [PubMed]
  22. G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010). [CrossRef] [PubMed]
  23. Disclaimer: Certain equipment or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available.
  24. K. Tiefenthaler, W. Lukosz, “Integrated optical switches and gas sensors,” Opt. Lett. 9(4), 137–139 (1984). [CrossRef] [PubMed]
  25. K. Tiefenthaler, W. Lukosz, “Grating couplers as integrated optical humidity and gas sensors,” Thin Solid Films 126(3-4), 205–211 (1985). [CrossRef]
  26. L. D. Turner, K. P. Weber, C. J. Hawthorn, R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201(4-6), 391–397 (2002). [CrossRef]
  27. M. L. Gorodetsky, I. S. Grudinin, “Fundamental thermal fluctuations in microspheres,” J. Opt. Soc. Am. B 21(4), 697–705 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited