OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3105–3116

Active Fabry-Perot cavity for photonic temporal integrator with ultra-long operation time window

Ningbo Huang, Ming Li, Reza Ashrafi, Lixian Wang, Xin Wang, José Azaña, and Ninghua Zhu  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3105-3116 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1296 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a photonic temporal integrator based on an active Fabry-Perot (F-P) cavity is proposed and theoretically investigated. The gain medium in the F-P cavity is a semiconductor optical amplifier (SOA) with high gain coefficient. Key feature of the proposed photonic integrator is that the length of integration time window is widely tunable and could be ideally extended to infinitely long when the injection current is approaching lasing condition. Based on an F-P cavity with practically feasible parameters, a photonic temporal integrator with an integration time window of 160 ns and an operation bandwidth of 180 GHz is achieved. The time-bandwidth product of this photonic temporal integrator is 28,800, which is about two-orders of magnitude higher than any previously reported results. Gain recovery effect has been also considered and analyzed for the impact on performance of the photonic integrator, followed by the simulation results of the impact of gain recovery.

© 2014 Optical Society of America

OCIS Codes
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(230.1150) Optical devices : All-optical devices

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: December 9, 2013
Revised Manuscript: January 23, 2014
Manuscript Accepted: January 23, 2014
Published: February 3, 2014

Ningbo Huang, Ming Li, Reza Ashrafi, Lixian Wang, Xin Wang, José Azaña, and Ninghua Zhu, "Active Fabry-Perot cavity for photonic temporal integrator with ultra-long operation time window," Opt. Express 22, 3105-3116 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Azaña, “Ultrafast Analog All-Optical Signal Processors Based on Fiber- Grating Devices,” IEEE Photon. J. 2(3), 359–386 (2010). [CrossRef]
  2. N. Q. Ngo, “Optical integrator for optical dark-soliton detection and pulse shaping,” Appl. Opt. 45(26), 6785–6791 (2006). [CrossRef] [PubMed]
  3. Y. Park, T. J. Ahn, Y. Dai, J. Yao, J. Azaña, “All-optical temporal integration of ultrafast pulse waveforms,” Opt. Express 16(22), 17817–17825 (2008). [CrossRef] [PubMed]
  4. M. H. Asghari, J. Azaña, “Photonic Integrator-Based Optical Memory Unit,” IEEE Photon. Technol. Lett. 23(4), 209–211 (2011). [CrossRef]
  5. Y. Jin, P. Costanzo-Caso, S. Granieri, A. Siahmakoun, “Photonic integrator for A/D conversion,” Proc. SPIE 7797, 77970J (2010). [CrossRef]
  6. N. Quoc Ngo, “Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission,” Opt. Lett. 32(20), 3020–3022 (2007). [CrossRef] [PubMed]
  7. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010). [CrossRef] [PubMed]
  8. A. Malacarne, R. Ashrafi, M. Li, S. LaRochelle, J. P. Yao, J. Azaña, “Single-shot photonic time-intensity integration based on a time-spectrum convolution system,” Opt. Lett. 37(8), 1355–1357 (2012). [CrossRef] [PubMed]
  9. R. Slavík, Y. Park, N. Ayotte, S. Doucet, T. J. Ahn, S. LaRochelle, J. Azaña, “Photonic temporal integrator for all-optical computing,” Opt. Express 16(22), 18202–18214 (2008). [CrossRef] [PubMed]
  10. N. Huang, N. Zhu, R. Ashrafi, X. Wang, W. Li, L. Wang, J. Azaña, and M. Li, “Active Fabry-Perot Resonator for Photonic Temporal Integrator,” Asia Communications and Photonics Conference 2013, OSA Technical Digest, paper AF1B.7. [CrossRef]
  11. J. Azaña, “Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator,” Opt. Lett. 33(1), 4–6 (2008). [CrossRef] [PubMed]
  12. M. H. Asghari, Y. Park, J. Azaña, “New design for photonic temporal integration with combined high processing speed and long operation time window,” Opt. Express 19(2), 425–435 (2011). [CrossRef] [PubMed]
  13. J. C. Simon, “GaInAsP semiconductor laser amplifier for single-mode fiber communications,” J. Lightwave Technol. 5(9), 1286–1295 (1987). [CrossRef]
  14. J. Buus, R. Plastow, “A Theoretical and Experimental Investigation of Fabry-Perot Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 21(6), 614–618 (1985). [CrossRef]
  15. M. J. Connelly, “Wideband Semiconductor Optical Amplifier Steady-State Numerical Model,” IEEE J. Quantum Electron. 37(3), 439–447 (2001). [CrossRef]
  16. P. Brosson, “Analytical Model of a Semiconductor Optical Amplifier,” J. Lightwave Technol. 12(1), 49–54 (1994). [CrossRef]
  17. C. Qin, X. Huang, X. Zhang, “Gain Recovery Acceleration by Enhancing Differential Gain in Quantum Well Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 47(11), 1443–1450 (2011). [CrossRef]
  18. A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, “Carrier Dynamics of Quantum-Dot, Quantum-Dash and Quantum-Well Semiconductor Optical Amplifiers Operating At 1.55μm,” IEEE J. Quantum Electron. 43(11), 982–991 (2007). [CrossRef]
  19. L. Lepetit, G. Chériaux, M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467–2474 (1995). [CrossRef]
  20. M. Körbl, A. Gröning, H. Schweizer, J. L. Gentner, “Gain spectra of coupled InGaAsP/InP quantum wells measured with a segmented contact traveling wave device,” J. Appl. Phys. 92(5), 2942–2944 (2002). [CrossRef]
  21. F. Girardin, G. Guekos, A. Houbavlis, “Gain Recovery of Bulk Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998). [CrossRef]
  22. M. Asghari, I. H. White, R. V. Penty, “Wavelength Conversion Using Semiconductor Optical Amplifiers,” J. Lightwave Technol. 15(7), 1181–1190 (1997). [CrossRef]
  23. G. Contestabile, Y. Yoshida, A. Maruta, K.-I. Kitayama, “Coherent Conversion in a Quantum Dot SOA,” IEEE Photon. Technol. Lett. 25(9), 791–794 (2013). [CrossRef]
  24. Y. Ben-Ezra, M. Haridim, B. I. Lembrikov, “Theoretical Analysis of Gain-Recovery Time and Chirp in QD-SOA,” IEEE Photon. Technol. Lett. 17(9), 1803–1805 (1989). [CrossRef]
  25. R. Giller, R. J. Manning, G. Talli, R. P. Webb, M. J. Adams, “Analysis of the dimensional dependence of semiconductor optical amplifier recovery speeds,” Opt. Express 15(4), 1773–1782 (2007). [CrossRef] [PubMed]
  26. C. S. Cleary, M. J. Power, S. Schneider, R. P. Webb, R. J. Manning, “Fast gain recovery rates with strong wavelength dependence in a non-linear SOA,” Opt. Express 18(25), 25726–25737 (2010). [CrossRef] [PubMed]
  27. H. Wang, J. Wu, J. Lin, “Spectral Characteristics of Optical Pulse Amplification in SOA Under Assist Light Injection,” J. Lightwave Technol. 23(9), 2671–2681 (2005).
  28. L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002). [CrossRef]
  29. W. Mathlouthi, F. Vacondio, P. Lemieux, L. A. Rusch, “SOA gain recovery wavelength dependence: simulation and measurement using a single-color pump-probe technique,” Opt. Express 16(25), 20656–20665 (2008). [CrossRef] [PubMed]
  30. J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, C. H. Joyner, “Acceleration of Gain Recovery in Semiconductor Optical Amplifiers by Optical Injection Near Transparency Wavelength,” IEEE Photon. Technol. Lett. 14(1), 12–14 (2002). [CrossRef]
  31. G. Einstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, “Gain recovery time of travellingwave semiconductor optical amplifiers,” Appl. Phys. Lett. 54(5), 454–456 (1989). [CrossRef]
  32. S. Tanaka, K. Morito, “Experimental analysis of internal optical losses in polarization-insensitive semiconductor optical amplifiers,” Appl. Phys. Lett. 97(26), 261104 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited