OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3117–3127

Study on the productivity of silicon nanoparticles by picosecond laser ablation in water: towards gram per hour yield

Romuald Intartaglia, Komal Bagga, and Fernando Brandi  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3117-3127 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (5443 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An investigation on the productivity of silicon nanoparticles by picosecond laser ablation in water is presented. A systematic experimental study is performed as function of the laser wavelength, fluence and ablation time. In case of ablation at 1064 nm silicon nanoparticles with a mean diameter of 40 nm are produced. Instead, ablation at 355 nm results in nanoparticles with a mean diameter of 9 nm for short ablation time while the mean diameter decreases to 3 nm at longer ablation time. An original model based on the in-situ ablation/photo-fragmentation physical process is developed, and it very well explains the experimental productivity findings. The reported phenomenological model has a general validity, and it can be applied to analyze pulsed laser ablation in liquid in order to optimize the process parameters for higher productivity. Finally, an outlook is given towards gram per hour yield of ultra-small silicon nanoparticles.

© 2014 Optical Society of America

OCIS Codes
(350.3390) Other areas of optics : Laser materials processing
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

Original Manuscript: December 12, 2013
Revised Manuscript: January 10, 2014
Manuscript Accepted: January 12, 2014
Published: February 3, 2014

Romuald Intartaglia, Komal Bagga, and Fernando Brandi, "Study on the productivity of silicon nanoparticles by picosecond laser ablation in water: towards gram per hour yield," Opt. Express 22, 3117-3127 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Walters, G. Bourianoff, H. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4, 143–146 (2005). [CrossRef] [PubMed]
  2. G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, L. Mitas, “Observation of a magic discrete family of ultrabright Si nanoparticles,” Appl. Phys. Lett. 80, 841–843 (2002). [CrossRef]
  3. M. Stupca, M. Alsalhi, T. Al Saud, A. Almuhanna, M. H. Nayfeh, “Enhancement of polychrystalline silicon solar cells using ultra thin films of silicon nanoparticle,” Appl. Phys. Lett. 91,063107 (2007). [CrossRef]
  4. S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14,125001 (2012). [CrossRef]
  5. F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano 5, 413–423 (2011). [CrossRef]
  6. Z. F. Li, E. Ruckenstein, “Water-soluble Poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels,” Nano Lett. 41463–1467 (2004). [CrossRef]
  7. S Chinnathambi, S. Chen, S. Ganesan, N Hanagata, “Silicon quantum dots for biological applications,” Adv. Healthcare Mater. (2013). [CrossRef]
  8. Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, Y. He, “Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc. 135, 8350–8356 (2013). [CrossRef]
  9. R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mat. Express 2, 510–518 (2012). [CrossRef]
  10. E. Borsella, M. Falconieri, N. Herlin, V. Loschenov, G. Miserocchi, Y. Nie, I. Rivolta, A. Ryabova, D. Wang, “Biomedical and sensor applications of silicon nanoparticles,” Silicon Nanocrystals: Fundamentals, Synthesis and Applications, L. Pavesi, R. Turan, eds. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010). [CrossRef]
  11. L. Xiao, L. Gu, S. B. Howell, M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano 5, 3651–3659 (2011). [CrossRef] [PubMed]
  12. D. Rioux, M. Laferrière, A. Douplik, D. Shah, L. Lilge, A. V. Kabashin, M. M. Meunier, “Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers,” J. Biomed. Opt. 14,021010 (2009). [CrossRef] [PubMed]
  13. M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem. 19, 5926–5933 (2009). [CrossRef]
  14. L. Mangolini, “Synthesis, properties, and applications of silicon nanocrystals,” J. Vac. Sci. Technol. B 31,020801 (2013). [CrossRef]
  15. D. Tan, S. Zhou, J. Qiu, N. Khusroa, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol. C-Photochem. Rev. 17, 50–68 (2013). [CrossRef]
  16. H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a Review,” Adv. Funct. Mater. 22, 1333–1353 (2012). [CrossRef]
  17. V. Amendola, M. Meneghetti, “What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?,” Phys. Chem. Chem. Phys. 15, 3027–3046 (2013). [CrossRef]
  18. H. Muto, K. Yamada, K. Miyajima, F. Mafuné, “Estimation of surface oxide on surfactant-free gold nanoparticles laser-ablated in water,” J. Phys. Chem. C 111, 17221–17226 (2007). [CrossRef]
  19. S. Barcikowski, G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15, 3022–3026 (2013). [CrossRef]
  20. S. W. Mhin, J. H. Ryu, K. M. Kim, G. S. Park, H. W. Ryu, K. B. Shim, T. Sasaki, N. Koshizaki, “Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium,” Appl. Phys. A Mater. Sci. Process. 96, 435–440 (2009). [CrossRef]
  21. Some companies producing and commercializing PLAL generated nanoparticles: PlasmaTech (Italy), http://www.plasmatech.it ; Particular (Germany), http://www.particular.eu ; I-Colloid (US), http://nano.imra.com ; AlphaNov (France), http://www.alphanov.com .
  22. R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. Di Fabrizio, A. Diaspro, F. Brandi, S. Barcikowski, “Bioconjugated silicon quantum dots from one-step green synthesis,” Nanoscale 4, 1271–1274 (2012). [CrossRef] [PubMed]
  23. K. Bagga, A. Barchanski, R. Intartaglia, S. Dante, R. Marotta, A. Diaspro, C. L. Sajti, F. Brandi, “Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes,” Laser Phys. Lett. 10,065603 (2013). [CrossRef]
  24. K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115, 5147–5151 (2011). [CrossRef]
  25. V. Švrc̆ek, D. Mariotti, M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in water,” Opt. Express 17, 520–527 (2009). [CrossRef] [PubMed]
  26. D. M. Popovic, J. S. Chai, A. A. Zekic, M. Trtica, M. Momcilovic, S. Maletic, “Synthesis of silicon-based nanoparticles by 10.6 μm nanosecond CO2 laser ablation in liquid,” Laser Phys. Lett. 10,026001 (2013). [CrossRef]
  27. P. Chewchinda, T. Tsuge, H. Funakubo, O. Odawara, H. Wada, “Laser wavelength effect on size and morphology of silicon nanoparticles prepared by laser ablation in liquid,” J. J. Appl. Phys. 52,025001 (2013).
  28. S. Yang, W. Cai, H. Zhang, X. Xu, H. Zeng, “Size and structure of Si nanoparticles by laser ablation in different liquid media and further centrifugation classification,” J. Phys. Chem. C 113, 19091–19095 (2009). [CrossRef]
  29. K. Abderrafi, R. García-Calzada, J. F. Sanchez-Royo, V. S. Chirvony, Sa”ıd Agouram, R. Abargues, R. Ibáñez, J. P. Martínez-Pastor, “Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures,” J. Phys. D: Appl. Phys. 46,135301 (2013). [CrossRef]
  30. S. Alkis, A. K. Okyay, B. Ortaç, “Post-Trearment of silicon nanocrystals produced by ultra-short pulsed laser ablation in liquid: towards blue luminescent nanocrystal generation,” J. Phys. Chem.C 116, 3432–3436 (2012).
  31. P. G. Kuzmin, G. A. Shafeev, V. V. Bukin, S. V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, G. Viau, “Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties,” J. Phys. Chem. C 114, 15266–15273 (2010). [CrossRef]
  32. R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C 115, 5102–5107 (2011). [CrossRef]
  33. M. Tiberi, A. Simonelli, G. Cristoforetti, P. Marsili, F. Giammanco, E. Giorgetti, “Effect of picosecond laser induced cavitation bubbles generated on Au targets in a nanoparticle production set-up,” Appl. Phys. A 110, 857–861 (2013). [CrossRef]
  34. N. Bärsch, J. Jakobi, S. Weiler, S. Barcikowski, “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology 20,445603 (2009). [CrossRef] [PubMed]
  35. P. A. Perminov, I. O. Dzhun, A. A. Ezhov, S. V. Zabotnov, L. A. Golovan, G. D. Ivlev, E. I. Gatskevich, V. L. Malevich, P. K. Kashkarov, “Creation of silicon nanocrystals using the laser ablation in liquid,” Laser Phys. 21, 801–804 (2011). [CrossRef]
  36. O. I. Eroshova, P. A. Perminov, S. V. Zabotnov, M. B. Gongalskii, A. A. Ezhov, L. A. Golovan, P. K. Kashkarov, “Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media,” Crystallogr. Rep., 57, 831–835 (2012). [CrossRef]
  37. R. Intartaglia, K. Bagga, A. Genovese, A. Athanassiou, R. Cingolani, A. Diaspro, F. Brandi, “Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid,” Phys. Chem. Chem. Phys. 14, 15406–15411 (2012). [CrossRef] [PubMed]
  38. F. Giammanco, E. Giorgetti, P. Marsili, A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010). [CrossRef]
  39. D. Werner, S. Hashimoto, “Improved working model for interpreting the excitation wavelength and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115, 5063–5072 (2011). [CrossRef]
  40. A. Pyatenko, M. Yamaguchi, M. Suzuki, “Mechanisms of size reduction of colloidal silver and gold nanoparticles irradiated by Nd:YAG laser,” J. Phys. Chem. C 113, 9078–9085 (2009). [CrossRef]
  41. F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050–9056 (2001). [CrossRef]
  42. V. Švrc̆ek, D. Mariotti, T. Nagai, Y. Shibata, I. Turkevych, M. Kondo, “Photovoltaic applications of silicon nanocrystal based nanostructures induced by nanosecond laser fragmentation in liquid media,” J. Phys. Chem. C 115, 5084–5093 (2011). [CrossRef]
  43. R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishanan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013). [CrossRef]
  44. H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, “Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres,” Angew. Chem. Int. Ed. 49,63616364 (2010). [CrossRef]
  45. Z. Swiatkowska-Warkocka, K. Koga, K. Kawaguchi, H. Wang, A. Pyatenko, N. Koshizaki, “Pulsed laser irradiation of colloidal nanoparticles: a new synthesis route for the production of non-equilibrium bimetallic alloy submicrometer spheres,” RSC Adv. 3, 79–83 (2013). [CrossRef]
  46. A. Pyatenko, H. Wang, N. Koshizaki, T. Tsuji, “Mechanism of pulse laser interaction with colloidal nanoparticles,” Laser & Photon. Rev. 7,596604 (2013). [CrossRef]
  47. V. Švrc̆ek, T. Sasaki, Y. Shimizu, N. Koshizaki, “Silicon nanocrystals formed by pulsed laser-induced fragmentation of electrochemically etched Si micrograins,” Chem. Phys. Lett. 429,483487 (2006). [CrossRef]
  48. A. Schwenke, P. Wagener, S. Nolte, S. Barcikowski, “Influence of processing time on nanoparticle generation during picosecond-pulsed fundamental and second harmonic laser ablation of metals in tetrahydrofuran,” Appl. Phys. A 104, 77–82 (2011). [CrossRef]
  49. H. Muto, K. Miyajima, F. Mafuné, “Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation,” J. Phys. Chem. C 112, 5810–5815 (2008). [CrossRef]
  50. F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105, 5114–5120 (2001). [CrossRef]
  51. O. Van Overschelde, J. Dervaux, L. Yonge, D. Thiry, R. Snyders, “Screening effect in gold nanoparticles generated in liquid by KrF ablation,” Laser Phys. 23,055901 (2013). [CrossRef]
  52. P. Blandin, K. A. Maximova, M. B. Gonglasky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, A. V. Kabashin, “Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications,” J. Mater. Chem. B 1, 2489–2495 (2013). [CrossRef]
  53. F. Brandi, N. Burdet, R. Carzino, A. Diaspro, “Very large spot size effect in nanosecond laser drilling efficiency of silicon,” Opt. Express 18, 23488–23494 (2010). [CrossRef] [PubMed]
  54. C. L. Sajti, R. Sattari, B. N. Chichkov, S. Barcikowski, “Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid,” J. Phys. Chem. C 114, 2421–2427 (2010). [CrossRef]
  55. P. Wagener, A. Schwenke, B. N. Chichkov, S. Barcikowski, “Pulsed laser ablation of zinc in Tetrahydrofuran: bypassing the cavitation bubble,” J. Phys. Chem. C 114, 7618–7625 (2010). [CrossRef]
  56. S. Alkis, M. Alevli, S. Burzhuev, H. A. Vural, A. K. Okyay, B. Ortaç, “Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition grown InN thin film,” J. Nanopart. Res. 14,1048 (2012). [CrossRef]
  57. J. Jiang, P. Liu, Y. Liang, H. B. Li, G. W. Yang, “Promoting the yield of nanoparticles from laser ablation in liquid,” Appl. Phys. A 105, 903–907 (2011). [CrossRef]
  58. T. Salminen, J. Dahl, M. Tuominen, P. Laukkanen, E. Arola, T. Niemi, “Single-step fabrication of luminescent GaAs nanocrystals by pulsed laser ablation in liquids,” Opt. Mat. Express 2, 799–813 (2012). [CrossRef]
  59. K. Abderrafi, E. Jiménez, T. Ben, S. I. Molina, R. Ibáñez, V. Chirvony, J. P. Martínez-Pastor, “Production of Nanometer-Size GaAs Nanocristals by Nanosecond Laser Ablation in Liquid,” J. Nanosci. Nanotechnol. 12, 6774–6778 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited