OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3169–3179

A novel elastic optical path network that utilizes bitrate-specific anchored frequency slot arrangement

Zhi-shu Shen, Hiroshi Hasegawa, Ken-ichi Sato, Takafumi Tanaka, and Akira Hirano  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3169-3179 (2014)
http://dx.doi.org/10.1364/OE.22.003169


View Full Text Article

Enhanced HTML    Acrobat PDF (2577 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel elastic optical path network where each specific bitrate signal uses its own dedicated fixed grid and one edge of its frequency grid is anchored at a specific frequency. Numerical evaluations using various bitrate signal patterns and network topologies show that the network proposal can almost match the performance of conventional flexible grid networks, while greatly mitigating the hardware requirements: it allows the use of the tunable filters for the fixed grid systems.

© 2014 Optical Society of America

OCIS Codes
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4251) Fiber optics and optical communications : Networks, assignment and routing algorithms

ToC Category:
Optical Transport and Large Scale Data Networks

History
Original Manuscript: October 3, 2013
Revised Manuscript: December 4, 2013
Manuscript Accepted: December 6, 2013
Published: February 4, 2014

Virtual Issues
European Conference and Exhibition on Optical Communication (2013) Optics Express

Citation
Zhi-shu Shen, Hiroshi Hasegawa, Ken-ichi Sato, Takafumi Tanaka, and Akira Hirano, "A novel elastic optical path network that utilizes bitrate-specific anchored frequency slot arrangement," Opt. Express 22, 3169-3179 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3169


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Sato, Advances in Transport Network Technologies – Photonic Networks, ATM and SDH (Artech House, 1996).
  2. T. S. El-Bawab, Optical Switching (Springer, 2006).
  3. K. Sato and H. Hasegawa, “Optical networking technologies that will create future bandwidth-abundant networks,” J. Opt. Commun. Netw.1(2), A81–A93 (2009). [CrossRef]
  4. A. L. Chiu, G. Choudhury, G. Clapp, R. Doverspike, M. Feuer, J. W. Gannett, G. Kim, J. Klincewicz, T. Kwon, G. Li, P. Magill, J. M. Simmons, R. A. Skoog, J. Strand, A. Lehmen, B. J. Wilson, S. L. Woodward, and D. Xu, “Architectures and protocols for capacity efficient, highly dynamic and highly resilient core networks,” J. Opt. Commun. Netw.4(1), 1–14 (2012). [CrossRef]
  5. M. D. Feuer and S. L. Woodward, “Advanced ROADM networks,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper NW3F.3. [CrossRef]
  6. R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2010), paper Mo.2.D.2. [CrossRef]
  7. F. Naruse, Y. Yamada, H. Hasegawa, and K. Sato, “Evaluations of OXC hardware scale and Network Resource Requirements of Different Optical Path Add/Drop Ratio Restriction Schemes,” J. Opt. Commun. Netw.4(11), B26–B34 (2012). [CrossRef]
  8. Y. Iwai, H. Hasegawa, and K. Sato, “A large-scale photonic node architecture that utilizes interconnected OXC subsystems,” Opt. Express21(1), 478–487 (2013). [CrossRef] [PubMed]
  9. I. T. U.-T. Recommendations, “Spectral grids for WDM applications: DWDM frequency grid,” G.694.1 (2012), http://www.itu.int/rec/T-REC-G.694.1/
  10. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009). [CrossRef]
  11. O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag.50(2), s12–s20 (2012). [CrossRef]
  12. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010). [CrossRef]
  13. A. Klekamp and U. Gebhard, “Benefits for mixed-line-rate (MLR) and elastic networks using flexible frequency grids,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2012), paper Mo.1.D.1. [CrossRef]
  14. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008). [CrossRef] [PubMed]
  15. E. Palkopoulou, G. Bosco, A. Carena, D. Klonidis, P. Poggiolini, and I. Tomkos, “Nyquist-WDM-based flexible optical networks: exploring physical layer design parameters,” J. Lightwave Technol.31(14), 2332–2339 (2013). [CrossRef]
  16. B. Kozicki, H. Takara, Y. Sone, A. Watanabe, and M. Jinno, “Distance-adaptive spectrum allocation in elastic optical path network (SLICE) with bit per symbol adjustment,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OMU3.pdf. [CrossRef]
  17. T. Takagi, H. Hasegawa, K. Sato, Y. Sone, B. Kozicki, A. Hirano, and M. Jinno, “Dynamic routing and frequency slot assignment for elastic optical path networks that adopt distance adaptive modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuI7. [CrossRef]
  18. K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Spectrally/bitrate flexible optical network planning,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2010), paper We.8.D.3.
  19. T. Zami, “What is the benefit of elastic superchannel for WDM network? ” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2013), paper We.2.E.1.
  20. K. Sato, “Recent developments in and challenges of elastic optical path networking,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Mo.2.K.1. [CrossRef]
  21. S. L. Woodward and M. D. Feuer, “Benefits and requirements of flexible-grid ROADMs and networks,” J. Opt. Commun. Netw.5(10), A19–A27 (2013). [CrossRef]
  22. P. Magill, presented at the workshop on spectrally/bit-rate flexible optical network design and operation, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011).
  23. T. Niwa, H. Hasegawa, K. Sato, T. Watanabe, H. Takahashi, and S. Soma, “Compact integrated tunable filter utilizing AWG routing function and small switches,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OW1C.2. [CrossRef]
  24. Z. Shen, H. Hasegawa, K. Sato, T. Tanaka, and A. Hirano, “A novel semi-flexible grid optical path network that utilizes aligned frequency slot arrangement,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2013), paper We.2.E.2.
  25. G. Shen and Q. Yang, “From coarse grid to mini-grid to gridless: How much can gridless help contentionless?” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuI3. [CrossRef]
  26. A. Allasia, V. Brizi, and M. Potenza, “Characteristics and trends of telecom Italia transport networks,” J. Fiber and Integrated Optics.27(4), 183–193 (2008). [CrossRef]
  27. R. Inkret, A. Kuchar, and B. Mikac, Advanced infrastructure for photonic networks – extended final report of COST 266 action (Faculty of Electrical Engineering and Computing, University of Zagreb, 2003), Chap.1.
  28. T. Zami, “Illustration of the best synergy between grooming of static traffic and elastic spectral efficiency in the WDM networks,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2012), paper Mo.1.D.3. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited