OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3180–3185

Propagation of a topologically half-charge vortex light beam in a self-focusing photorefractive medium

Chih-Rong Chen, Chih-Hung Yeh, and Ming-Feng Shih  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3180-3185 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1718 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



While a fundamental Gaussian light beam can form stably a spatial soliton in certain self-focusing medium, a single-wave topologically integer-n-charge vortex light beam cannot. It breaks up into 2n filaments due to symmetry breaking and azimuthal instability, in which every azimuthal section of a π phase range from a soliton and repels itself from its azimuthal neighboring soliton. Then what happens to the half-charge vortex light beam, which contains only one section of a π phase range? We investigate experimentally and theoretically the propagation and stability of a topologically half-charge vortex light beam in a self-focusing photorefractive medium. We observed that the light beam propagates unstably in a self-focusing medium and breaks up into three filaments. This result is confirmed by numerical simulation and perturbation analysis.

© 2014 Optical Society of America

OCIS Codes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5330) Nonlinear optics : Photorefractive optics
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Physical Optics

Original Manuscript: December 9, 2013
Revised Manuscript: January 23, 2014
Manuscript Accepted: January 23, 2014
Published: February 4, 2014

Chih-Rong Chen, Chih-Hung Yeh, and Ming-Feng Shih, "Propagation of a topologically half-charge vortex light beam in a self-focusing photorefractive medium," Opt. Express 22, 3180-3185 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. I. Larkin, V. M. Vinokur, “Quantum statistical mechanics of vortices in high-temperature superconductors,” Phys. Rev. B Condens. Matter 50(14), 10272–10286 (1994). [CrossRef] [PubMed]
  2. T. F. Fric, A. Roshko, “Vortical structure in the wake of a transverse jet,” J. Fluid Mech. 279(-1), 1–47 (1994). [CrossRef]
  3. C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis, B. P. Anderson, “Spontaneous vortices in the formation of Bose–Einstein condensates,” Nature 455(7215), 948–951 (2008). [CrossRef]
  4. A. Bandyopadhyay, R. P. Singh, “Wigner distribution of elliptical quantum optical vortex,” Opt. Commun. 284(1), 256–261 (2011). [CrossRef]
  5. J. Leach, E. Yao, M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004). [CrossRef]
  6. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  7. N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner,” Opt. Lett. 22(1), 52–54 (1997). [CrossRef] [PubMed]
  8. Z. X. Wang, N. Zhang, X. C. Yuan, “High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication,” Opt. Express 19(2), 482–492 (2011). [CrossRef] [PubMed]
  9. S. Fürhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13(3), 689–694 (2005). [CrossRef] [PubMed]
  10. G. A. Swartzlander, C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69(17), 2503–2506 (1992). [CrossRef] [PubMed]
  11. Z. G. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, P. D. Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett. 22(23), 1751–1753 (1997). [CrossRef] [PubMed]
  12. V. Tikhonenko, J. Christou, B. Lutherdaves, “Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium,” J. Opt. Soc. Am. B 12(11), 2046–2052 (1995). [CrossRef]
  13. J. P. Torres, J. M. Soto-Crespo, L. Torner, D. V. Petrov, “Solitary-wave vortices in quadratic nonlinear media,” J. Opt. Soc. Am. B 15(2), 625–627 (1998). [CrossRef]
  14. Y. V. Kartashov, V. A. Vysloukh, L. Torner, “Stability of vortex solitons in thermal nonlinear media with cylindrical symmetry,” Opt. Express 15(15), 9378–9384 (2007). [CrossRef] [PubMed]
  15. W. J. Firth, D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79(13), 2450–2453 (1997). [CrossRef]
  16. C. C. Jeng, M. F. Shih, K. Motzek, Y. Kivshar, “Partially incoherent optical vortices in self-focusing nonlinear media,” Phys. Rev. Lett. 92(4), 043904 (2004). [CrossRef] [PubMed]
  17. S. Y. Chen, T. C. Lo, M. F. Shih, “Stabilization of optical vortices in noninstantaneous self-focusing medium by small rotating intensity modulation,” Opt. Express 15(21), 13689–13694 (2007). [CrossRef] [PubMed]
  18. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A: Pure Appl. Opt. 6(2), 259–268 (2004). [CrossRef]
  19. I. V. Basistiy, V. A. Pas ko, V. V. Slyusar, M. S. Soskin, M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A, Pure Appl. Opt. 6(5), S166–S169 (2004). [CrossRef]
  20. I. V. Basistiy, M. S. Soskin, M. V. Vasnetsov, “Optical wave-front dislocations and their properties,” Opt. Commun. 119(5-6), 604–612 (1995). [CrossRef]
  21. J. B. Götte, S. Franke-Arnold, R. Zambrini, S. M. Barnett, “Quantum formulation of fractional orbital angular momentum,” J. Mod. Opt. 54(12), 1723–1738 (2007). [CrossRef]
  22. M. A. Molchan, E. V. Doktorov, R. A. Vlasov, “Propagation of fractional charge Laguerre-Gaussian light beams in moving defocusing media with thermal nonlinearity,” J. Opt. A: Pure Appl. Opt. 11(1), 015706 (2009). [CrossRef]
  23. M. Segev, M. F. Shih, G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13(4), 706–718 (1996). [CrossRef]
  24. B. Crosignani, P. DiPorto, A. Degasperis, M. Segev, S. Trillo, “Three-dimensional optical beam propagation and solitons in photorefractive crystals,” J. Opt. Soc. Am. B 14(11), 3078–3090 (1997). [CrossRef]
  25. Notice there is a small difference between the applied nonlinearity strength in the simulation and in the experiment. This is due to the possible imhomogeneity of electro-optic coefficient of the crystal, or not exactly the same light beam sizes in simulation and in experiment.
  26. A. V. Buryak, Y. S. Kivshar, M. F. Shih, M. Segev, “Induced coherence and stable soliton spiraling,” Phys. Rev. Lett. 82(1), 81–84 (1999). [CrossRef]
  27. M. F. Shih, M. Segev, G. Salamo, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78(13), 2551–2554 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited