OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3186–3198

Local plasmon resonances of metal-in-metal core-shells

Matthew Arnold, Martin Blaber, and Mike Ford  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3186-3198 (2014)
http://dx.doi.org/10.1364/OE.22.003186


View Full Text Article

Enhanced HTML    Acrobat PDF (2211 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the tunability and strength of the localized surface plasmons of binary metal-in-metal core-shells. Ellipsoids are used as an analytical model to show how the fill factor continuously tunes a hybridized mode between those of the constituents, suggesting the use of metal combinations with widely differing plasma frequencies for broad tunability. A quasistatic eigenmode method is used separate geometric and material parameters to facilitate prediction of hybridized dipole modes in arbitrary shapes. A modified ellipsoid model is found to adequately describe the symmetric dipole-dipole resonance of well-rounded cuboids.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Plasmonics

History
Original Manuscript: September 6, 2013
Revised Manuscript: December 17, 2013
Manuscript Accepted: December 18, 2013
Published: February 4, 2014

Citation
Matthew Arnold, Martin Blaber, and Mike Ford, "Local plasmon resonances of metal-in-metal core-shells," Opt. Express 22, 3186-3198 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3186


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. D. Arnold, M. G. Blaber, “Optical performance and metallic absorption in nanoplasmonic systems,” Opt. Express 17(5), 3835–3847 (2009). [CrossRef] [PubMed]
  2. M. G. Blaber, M. D. Arnold, M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010). [CrossRef] [PubMed]
  3. M. G. Blaber, M. D. Arnold, M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter 21(14), 144211 (2009). [CrossRef] [PubMed]
  4. M. B. Cortie, A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev. 111(6), 3713–3735 (2011). [CrossRef] [PubMed]
  5. L. Feng, G. Gao, P. Huang, K. Wang, X. Wang, T. Luo, C. Zhang, “Optical properties and catalytic activity of bimetallic gold-silver nanoparticles,” Nano Biomed. Eng. 2, 258–267 (2010).
  6. P. Mulvaney, M. Giersig, A. Henglein, “Electrochemistry of multilayer colloids - preparation and absorption-spectrum of gold-coated silver particles,” J. Phys. Chem. 97(27), 7061–7064 (1993). [CrossRef]
  7. M. Moskovits, I. Srnova-Sloufova, B. Vlckova, “Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum,” J. Chem. Phys. 116(23), 10435–10446 (2002). [CrossRef]
  8. X. Wang, Z. Y. Zhang, G. V. Hartland, “Electronic dephasing in bimetallic gold-silver nanoparticles examined by single particle spectroscopy,” J. Phys. Chem. B 109(43), 20324–20330 (2005). [CrossRef] [PubMed]
  9. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  10. D. J. Wu, X. D. Xu, X. J. Liu, “Electric field enhancement in bimetallic gold and silver nanoshells,” Solid State Commun. 148(3-4), 163–167 (2008). [CrossRef]
  11. C. E. Román-Velázquez, C. Noguez, J. Z. Zhang, “Theoretical study of surface plasmon resonances in hollow gold-silver double-shell nanostructures,” J. Phys. Chem. A 113(16), 4068–4074 (2009). [CrossRef] [PubMed]
  12. J. Zhu, “Surface plasmon resonance from bimetallic interface in Au-Ag core-shell structure nanowires,” Nanoscale Res. Lett. 4(9), 977–981 (2009). [CrossRef] [PubMed]
  13. R. Jiang, H. Chen, L. Shao, Q. Li, J. Wang, “Unraveling the evolution and nature of the plasmons in (Au Core)-(Ag Shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012). [CrossRef] [PubMed]
  14. L. Raguin, C. Hafner, P. Leuchtmann, “Boundary integral equation method for the analysis of tunable light scattering properties of plasmonic core-shell nanoparticles,” J. Comput. Theor. Nanosci. 8(8), 1590–1599 (2011). [CrossRef]
  15. G. Park, C. Lee, D. Seo, H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28(24), 9003–9009 (2012). [CrossRef] [PubMed]
  16. L. Chuntonov, M. Bar-Sadan, L. Houben, G. Haran, “Correlating electron tomography and plasmon spectroscopy of single noble metal core-shell nanoparticles,” Nano Lett. 12(1), 145–150 (2012). [CrossRef] [PubMed]
  17. U. K. Chettiar, N. Engheta, “Internal homogenization: Effective permittivity of a coated sphere,” Opt. Express 20(21), 22976–22986 (2012). [CrossRef] [PubMed]
  18. Y. Gu, J. Li, O. J. F. Martin, Q. H. Gong, “Controlling plasmonic resonances in binary metallic nanostructures,” J. Appl. Phys. 107(11), 114313 (2010). [CrossRef]
  19. M. G. Blaber, M. D. Arnold, M. J. Ford, “Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009). [CrossRef]
  20. F. García de Abajo, J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B 56(24), 15873–15884 (1997). [CrossRef]
  21. I. D. Mayergoyz, D. R. Fredkin, Z. Y. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005). [CrossRef]
  22. E. Prodan, P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120(11), 5444–5454 (2004). [CrossRef] [PubMed]
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).
  24. C. E. Román-Velázquez, C. Noguez, “Designing the plasmonic response of shell nanoparticles: Spectral representation,” J. Chem. Phys. 134(4), 044116 (2011). [CrossRef] [PubMed]
  25. M. D. Arnold, M. G. Blaber, M. J. Ford, N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18(7), 7528–7542 (2010). [CrossRef] [PubMed]
  26. M. B. Cortie, F. G. Liu, M. D. Arnold, Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir 28(24), 9103–9112 (2012). [CrossRef] [PubMed]
  27. D. W. Brandl, P. Nordlander, “Plasmon modes of curvilinear metallic core/shell particles,” J. Chem. Phys. 126(14), 144708 (2007). [CrossRef] [PubMed]
  28. O. Y. Feng, M. Isaacson, “Surface-plasmon excitation of objects with arbitrary shape and dielectric-constant,” Philos. Mag. B 60, 481–492 (1989).
  29. I. D. Mayergoyz, Z. Zhang, “Numerical analysis of plasmon resonances in metallic nanoshells,” IEEE Trans. Magn. 43(4), 1689–1692 (2007). [CrossRef]
  30. J. H. Weaver and H. P. R. Frederikse, “Optical properties of selected elements,” in CRC Handbook (CRC, 2001).
  31. H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited