OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3208–3218

Experimental characterization and mitigation of turbulence induced signal fades within an ad hoc FSO network

Joaquin Perez, Stanislav Zvanovec, Zabih Ghassemlooy, and Wasiu O. Popoola  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3208-3218 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3659 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical beams propagating through the turbulent atmospheric channel suffer from both the attenuation and phase distortion. Since future wireless networks are envisaged to be deployed in the ad hoc mesh topology, this paper presents the experimental laboratory characterization of mitigation of turbulence induced signal fades for two ad hoc scenarios. Results from measurements of the thermal structure constant along the propagation channels, changes of the coherence lengths for different turbulence regimes and the eye diagrams for partially correlated turbulences in free space optical channels are discussed. Based on these results future deployment of optical ad hoc networks can be more straightforwardly planned.

© 2014 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.4510) Fiber optics and optical communications : Optical communications
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Optical Communications

Original Manuscript: October 3, 2013
Revised Manuscript: December 20, 2013
Manuscript Accepted: December 21, 2013
Published: February 4, 2014

Joaquin Perez, Stanislav Zvanovec, Zabih Ghassemlooy, and Wasiu O. Popoola, "Experimental characterization and mitigation of turbulence induced signal fades within an ad hoc FSO network," Opt. Express 22, 3208-3218 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC Press., Boca Raton, 2012).
  2. “fSONA unveils 2.5-Gbps free-space optical systems,” in Lightwave Online, (2012).
  3. S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013). [CrossRef]
  4. E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. DErrico, V. Guarino, M. Matsumoto, “1.28 terabit/s (32x40 Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Comm. 27(9), 1639–1645 (2009). [CrossRef]
  5. E. Leitgeb, M. Gebhart, U. Birnbacher, “Optical networks, last mile access and applications,” J. Opt. Fiber Commun. Rep. 2, 56–85 (2005).
  6. M. N. Smadi, S. C. Ghosh, A. A. Farid, T. D. Todd, S. Hranilovic, “Free-space optical gateway placement in hybrid wireless mesh networks,” J. Lightwave Technol. 27(14), 2688–2697 (2009). [CrossRef]
  7. A. O. Aladeloba, A. J. Phillips, M. S. Woolfson, “Improved bit error rate evaluation for optically pre-amplified free-space optical communication systems in turbulent atmosphere,” IET Optoelectron. 6(1), 26–33 (2012). [CrossRef]
  8. L. Dordova, O. Wilfert, “Calculation and comparison of turbulence attenuation by different method,” Radioengineering 19, 162–163 (2010).
  9. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, II ed. (SPIE Press, Washington, 2005).
  10. W. Gappmair, “Further results on the capacity of free-space optical channels in turbulent atmosphere,” IET Commun. 5(9), 1262–1267 (2011). [CrossRef]
  11. M. A. Khalighi, N. Schwartz, N. Aitamer, S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw. 1(6), 580–593 (2009). [CrossRef]
  12. T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 8(2), 951–957 (2009). [CrossRef]
  13. G. Yang, M.-A. Khalighi, S. Bourennane, Z. Ghassemlooy, “Approximation to the sum of two correlated gamma-gamma variates and its applications in free-space optical communications,” IEEE Wireless Commun. Lett. 1(6), 621–624 (2012). [CrossRef]
  14. S. Kaneko, T. Hamai, K. Oba, “Evaluation of a free-space optical mesh network communication system in the Tokyo metropolitan area,” J. Opt. Netw. 1, 414–423 (2002).
  15. M. A. Kashani, M. Safari, M. Uysal, “Optimal relay placement and diversity analysis of relay-assisted free-space optical communication systems,” J. Opt. Commun. Netw. 5(1), 37–47 (2013). [CrossRef]
  16. X. Yang, “Availability-differentiated service provisioning in free-space optical access networks,” J. Opt. Netw. 4(7), 391–399 (2005). [CrossRef]
  17. Z. Hu, P. Verma, J. J. Sluss., “Improved reliability of free-space optical mesh networks through topology design,” J. Opt. Netw. 7(5), 436–448 (2008). [CrossRef]
  18. S. D. Milner, J. Llorca, C. C. Davis, “Autonomous reconfiguration and control in directional mobile ad-hoc networks,” IEEE Circuits Syst. Mag. 9(2), 10–26 (2009). [CrossRef]
  19. J. Libich, S. Zvanovec, M. Mudroch, “Mitigation of time-spatial influence in free-space optical networks utilizing route diversity,” Proc. SPIE 8246, 82460O (2012). [CrossRef]
  20. S. Hippler, F. Hormuth, D. J. Butler, W. Brandner, T. Henning, “Atmosphere-like turbulence generation with surface-etched phase-screens,” Opt. Express 14(22), 10139–10148 (2006). [CrossRef] [PubMed]
  21. C. Wilcox and S. Restaino, “A New Method of Generating Atmospheric Turbulence with a Liquid Crystal Spatial Light Modulator,” in New Developments in Liquid Crystals, G. V. Tkachenko, ed. (InTech, 2009), pp. 71–92.
  22. Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, M. Ijaz, “Performance analysis of ethernet/fast-ethernet free space optical communications in a controlled weak turbulence condition,” J. Lightwave Technol. 30(13), 2188–2194 (2012). [CrossRef]
  23. W. K. Pratt, Laser Communication Systems, I ed. (John Wiley & Sons, Inc., New York, 1969).
  24. A. Kolmogorov, ed., Turbulence, Classic Papers on Statistical Theory (Wiley-Interscience, New York, 1961).
  25. A. M. Obukhov, “Structure of the temperature field in turbulent flow,” Izv. Akad. Nauk. SSSR Ser.Ser. 13, 58–96 (1949).
  26. S. Corrsin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22(4), 469–473 (1951). [CrossRef]
  27. G. R. Osche, Optical Detection Theory for Laser Applications, I ed. (Wiley-Interscience, 2002).
  28. Z. Ghassemlooy, W. O. Popoola, S. Gao, J. I. H. Allen, E. Leitgeb, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectron. 2(1), 16–23 (2008). [CrossRef]
  29. M. Uysal, J. T. Li, M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 5(6), 1229–1233 (2006). [CrossRef]
  30. H. Moradi, H. H. Refai, P. G. LoPresti, “Switch-and-stay and switch-and-examine dual diversity for high-speed free-space optics links,” IET Optoelectron. 6(1), 34–42 (2012). [CrossRef]
  31. S. Zvanovec, J. Perez, Z. Ghassemlooy, S. Rajbhandari, J. Libich, “Route diversity analyses for free-space optical wireless links within turbulent scenarios,” Opt. Express 21(6), 7641–7650 (2013). [CrossRef] [PubMed]
  32. Y. Guowei, M. Khalighi, S. Bourennane, “Performance of receive diversity FSO systems under realistic beam propagation conditions,” in Proc. of the 2012 8th Int. Symp. Commun. Syst. Netw. Digital Signal Process. (CSNDSP), (2012), pp. 1–5.
  33. J. Jaeshin and W. Sunghong, “Comparative study on cooperative communications in the upper layers at ad-hoc networks,” in 2013 15th Int. Conf. Adv. Commun. Technolo. (ICACT) (2013), pp. 133–137.
  34. J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, H. L. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett. 16(3), 408–410 (2012). [CrossRef]
  35. J. A. Louthain, J. D. Schmidt, “Anisoplanatism in airborne laser communication,” Opt. Express 16(14), 10769–10785 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited