OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3244–3260

Third-order antibunching from an imperfect single-photon source

Martin J. Stevens, Scott Glancy, Sae Woo Nam, and Richard P. Mirin  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3244-3260 (2014)
http://dx.doi.org/10.1364/OE.22.003244


View Full Text Article

Enhanced HTML    Acrobat PDF (4302 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We measure second- and third-order temporal coherences, g(2)(τ) and g(3)(τ1,τ2), of an optically excited single-photon source: an InGaAs quantum dot in a microcavity pedestal. Increasing the optical excitation power leads to an increase in the measured count rate, and also an increase in multi-photon emission probability. We show that standard measurements of g(2) provide limited information about this multi-photon probability, and that more information can be gained by simultaneously measuring g(3). Experimental results are compared with a simple theoretical model to show that the observed antibunchings are consistent with an incoherent addition of two sources: 1) an ideal single-photon source that never emits multiple photons and 2) a background cavity emission having Poissonian photon number statistics. Spectrally resolved cross-correlation measurements between quantum-dot and cavity modes show that photons from these two sources are largely uncorrelated, further supporting the model. We also analyze the Hanbury Brown-Twiss interferometer implemented with two or three “click” detectors, and explore the conditions under which it can be used to accurately measure g(2)(τ) and g(3)(τ1,τ2).

© 2014 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(270.1670) Quantum optics : Coherent optical effects
(270.5290) Quantum optics : Photon statistics

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: November 21, 2013
Manuscript Accepted: January 23, 2014
Published: February 4, 2014

Virtual Issues
April 21, 2014 Spotlight on Optics

Citation
Martin J. Stevens, Scott Glancy, Sae Woo Nam, and Richard P. Mirin, "Third-order antibunching from an imperfect single-photon source," Opt. Express 22, 3244-3260 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3244


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. D. Eisaman, J. Fan, A. Migdall, S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011). [CrossRef] [PubMed]
  2. F. Davidson, “Measurements of photon correlations in a laser beam near threshold with time-to-amplitude converter techniques,” Phys. Rev. 185(2), 446–453 (1969). [CrossRef]
  3. R. F. Chang, V. Korenman, C. O. Alley, R. W. Detenbeck, “Correlations in light from a laser at threshold,” Phys. Rev. 178(2), 612–621 (1969). [CrossRef]
  4. M. Corti, V. Degiorgio, “Intrinsic third-order correlations in laser light near threshold,” Phys. Rev. A 14(4), 1475–1478 (1976). [CrossRef]
  5. Y. Qu, S. Singh, C. D. Cantrell, “Measurements of higher order photon bunching of light beams,” Phys. Rev. Lett. 76(8), 1236–1239 (1996). [CrossRef] [PubMed]
  6. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, O. Thomas, A. J. Shields, “Probing higher order correlations of the photon field with photon number resolving avalanche photodiodes,” Opt. Express 19(14), 13268–13276 (2011). [CrossRef] [PubMed]
  7. J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009). [CrossRef] [PubMed]
  8. M. Assmann, F. Veit, M. Bayer, M. van der Poel, J. M. Hvam, “Higher-order photon bunching in a semiconductor microcavity,” Science 325(5938), 297–300 (2009). [CrossRef] [PubMed]
  9. D. Elvira, X. Hachair, V. B. Verma, R. Braive, G. Beaudoin, I. Robert-Philip, I. Sagnes, B. Baek, S. W. Nam, E. A. Dauler, I. Abram, M. J. Stevens, A. Beveratos, “Higher-order photon correlations in pulsed photonic crystal nanolasers,” Phys. Rev. A 84, 061802 (2011).
  10. A. G. Palmer, N. L. Thompson, “Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy,” Biophys. J. 52(2), 257–270 (1987). [CrossRef] [PubMed]
  11. P.-A. Lemieux, D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16(7), 1651–1664 (1999). [CrossRef]
  12. M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek, K. Murr, T. Wilk, G. Rempe, “Three-photon correlations in a strongly driven atom-cavity system,” Phys. Rev. Lett. 107(2), 023601 (2011). [CrossRef] [PubMed]
  13. I. N. Agafonov, M. V. Chekhova, T. Sh. Iskhakov, L.-A. Wu, “High-visibility intensity interference and ghost imaging with pseudo-thermal light,” J. Mod. Opt. 56(2-3), 422–431 (2009). [CrossRef]
  14. Y. Zhou, J. Simon, J. Liu, Y. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81(4), 043831 (2010). [CrossRef]
  15. Y. Zhou, J. Liu, J. Simon, Y. Shih, “Resolution enhancement of third-order thermal light ghost imaging in the photon counting regime,” J. Opt. Soc. Am. B 29(3), 377 (2012). [CrossRef]
  16. A. Hayat, A. Nevet, M. Orenstein, “Ultrafast partial measurement of fourth-order coherence by HBT interferometry of upconversion-based autocorrelation,” Opt. Lett. 35(5), 793–795 (2010). [CrossRef] [PubMed]
  17. T. Horikiri, P. Schwendimann, A. Quattropani, S. Hing, A. Forchel, Y. Yamamoto, “Higher order coherence of exciton-polariton condensates,” Phys. Rev. B 81(3), 033307 (2010). [CrossRef]
  18. M. Bajcsy, A. Rundquist, A. Majumdar, T. Sarmiento, K. Fischer, K. G. Lagoudakis, S. Buckley, and J. Vuckovic, “Non-classical three-photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity,” arXiv:1307.3601 (2013).
  19. E. A. Goldschmidt, F. Piacentini, I. Ruo Berchera, S. V. Polyakov, S. Peters, S. Kuck, G. Brida, I. P. Degiovanni, A. L. Migdall, M. Genovese, “Mode reconstruction of a light field by multi-photon statistics,” Phys. Rev. A 88(1), 013822 (2013). [CrossRef]
  20. M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18(2), 1430–1437 (2010). [CrossRef] [PubMed]
  21. L. Ma, M. T. Rakher, M. J. Stevens, O. Slattery, K. Srinivasan, X. Tang, “Temporal correlation of photons following frequency up-conversion,” Opt. Express 19(11), 10501–10510 (2011). [CrossRef] [PubMed]
  22. R. Loudon, The Quantum Theory of Light, Third Edition (Oxford University, Oxford, 2000).
  23. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, Y. Yamamoto, “Submicrosecond correlations in photoluminescence from InAs quantum dots,” Phys. Rev. B 69(20), 205324 (2004).
  24. E. Waks, C. Santori, Y. Yamamoto, “Security aspects of quantum key distribution with sub-Poisson light,” Phys. Rev. A 66(4), 042315 (2002). [CrossRef]
  25. R. Loudon, P. L. Knight, “Squeezed light,” J. Mod. Opt. 34(6-7), 709–759 (1987). [CrossRef]
  26. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
  27. S. Reitzenstein, A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43(3), 033001 (2010). [CrossRef]
  28. P. R. Tapster, J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45(3), 595–604 (1998). [CrossRef]
  29. B. Blauensteiner, I. Herbauts, S. Bettelli, A. Poppe, H. Hübel, “Photon bunching in parametric down-conversion with continuous-wave excitation,” Phys. Rev. A 79(6), 063846 (2009). [CrossRef]
  30. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007). [CrossRef] [PubMed]
  31. M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009). [CrossRef] [PubMed]
  32. M. Yamaguchi, T. Asano, S. Noda, “Third emission mechanism in solid-state nanocavity quantum electrodynamics,” Rep. Prog. Phys. 75(9), 096401 (2012). [CrossRef] [PubMed]
  33. M. Florian, P. Gartner, A. Steinhoff, C. Gies, and F. Jahnke, “Coulomb-assisted cavity feeding in the non-resonant optical emission from a quantum dot,” arXiv:1308.2080 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited