OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3261–3270

Selective generation of ultracold high-density 1s orthoexcitons in Cu2O with phase-modulated pulse using acousto-optic programmable filter

Kosuke Yoshioka, Ken Miyashita, and Makoto Kuwata-Gonokami  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3261-3270 (2014)
http://dx.doi.org/10.1364/OE.22.003261


View Full Text Article

Enhanced HTML    Acrobat PDF (2134 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultracold and high-density 1s orthoexcitons in semiconductor cuprous oxide are prepared via resonant two-photon absorption of a phase-tailored femtosecond pulse, by utilizing an acousto-optic programmable dispersive filter. The stability of the quantum degenerate exciton gas is studied using excitonic Lyman spectroscopy. A density of 1016 cm−3 is realized without creating hot carriers, and the Lyman spectrum remains unchanged at this density. This result assures the stability of a spontaneous Bose–Einstein condensate of excitons at sub-Kelvin temperatures.

© 2014 Optical Society of America

OCIS Codes
(230.1040) Optical devices : Acousto-optical devices
(320.5540) Ultrafast optics : Pulse shaping
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(020.1475) Atomic and molecular physics : Bose-Einstein condensates

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: November 25, 2013
Revised Manuscript: January 24, 2014
Manuscript Accepted: January 24, 2014
Published: February 4, 2014

Citation
Kosuke Yoshioka, Ken Miyashita, and Makoto Kuwata-Gonokami, "Selective generation of ultracold high-density 1s orthoexcitons in Cu2O with phase-modulated pulse using acousto-optic programmable filter," Opt. Express 22, 3261-3270 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3261


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1920–1960 (2000). [CrossRef]
  2. P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245–249 (1997). [CrossRef]
  3. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, “Amplitude and phse control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000). [CrossRef]
  4. M. Pittman, S. Ferr, J. P. Rousseau, L. Notebaert, J. P. Chambaret, G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002). [CrossRef]
  5. E. Seres, R. Herzog, J. Seres, D. Kaplan, C. Spielmann, “Generation of intense 8 fs laser pulses,” Opt. Express 11, 240–247 (2003). [CrossRef] [PubMed]
  6. S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “High-energy pulse synthesis with sub-cyclewaveform control for strong-field physics,” Nat. Phys. 5, 475–479 (2011).
  7. A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, T. Oksenhendler, “Single-shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral interferometry,” Opt. Lett. 35, 3856–3858 (2010). [CrossRef] [PubMed]
  8. S. L. Cousin, N. Forget, A. Grün, P. K. Bates, D. R. Austin, J. Biegert, “Few-cycle pulse characterization with an acousto-optic pulse shaper,” Opt. Lett. 36, 2803–2805 (2011). [CrossRef] [PubMed]
  9. S. L. Cousin, J. M. Bueno, N. Forget, D. R. Austin, J. Biegert, “Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann–Shack wavefront sensor,” Opt. Lett. 37, 3291–3293 (2012). [CrossRef] [PubMed]
  10. C. A. Froud, E. T. Rogers, D. C Hanna, W. S Brocklesby, M. Praeger, A. M. de Paula, J. J. Baumberg, J. G. Frey, “Soft-x-ray wavelength shift induced by ionization effects in a capillary,” Opt. Lett. 31, 374–376 (2006). [CrossRef] [PubMed]
  11. G. Bergner, E. Vater, D. Akimov, S. Schlücker, H. Bartelt, B. Dietzek, J. Popp, “Tunable narrow band filter for CARS microscopy,” Laser Phys. Lett. 7, 510–516 (2010). [CrossRef]
  12. L. Canova, X. Chen, A. Trisorio, A. Jullien, A. Assion, G. Tempea, N. Forget, T. Oksenhendler, R. Lopez-Martens, “Carrier-envelope phase stabilization and control using a transmission grating compressor and an AOPDF,” Opt. Lett. 34, 1333–1335 (2009). [CrossRef] [PubMed]
  13. N. Forget, L. Canova, X. Chen, A. Jullien, R. Lopez-Martens, “Closed-loop carrier-envelope phase stabilization with an acousto-optic programmable dispersive filter,” Opt. Lett. 34, 3647–3649 (2009). [CrossRef] [PubMed]
  14. Y. Li, J. Lewellen, “Generating a quasiellipsoidal electron beam by 3D laser-pulse shaping,” Phys. Rev. Lett. 100, 074801 (2008). [CrossRef] [PubMed]
  15. R. Hildner, D. Brinks, N. F. van Hulst, “Femtosecond coherence and quantum control of single molecules at room temperature,” Nat. Phys. 7, 172–177 (2010). [CrossRef]
  16. D. Hulin, A. Mysyrowicz, C. Benoît à la Guillaume, “Evidence for Bose-Einstein statistics in an exciton gas,” Phys. Rev. Lett. 45, 1970–1973 (1980). [CrossRef]
  17. D. P. Trauernicht, J. P. Wolfe, A. Mysyrowicz, “Thermodynamics of strain-confined paraexcitons in Cu2O,” Phys. Rev. B 34, 2561–2575 (1986). [CrossRef]
  18. D. W. Snoke, J. L. Lin, J. P. Wolfe, “Coexistense of Bose–Einstein paraexcitons with Maxwell-Boltzmann orthoexcitons in Cu2O,” Phys. Rev. B 43, 1226–1228 (1991). [CrossRef]
  19. J. L. Lin, J. P. Wolfe, “Bose-Einstein condensation of paraexcitons in stressed Cu2O,” Phys. Rev. Lett. 71, 1222–1225 (1993). [CrossRef] [PubMed]
  20. N. Naka, N. Nagasawa, “Bosonic stimulation of cold excitons in a harmonic potential trap in Cu2O,”J. Lumin. 112, 11–16 (2005). [CrossRef]
  21. K. Yoshioka, E. Chae, M. Kuwata-Gonokami, “Transition to a Bose–Einstein condensate and relaxation explosion of excitons at sub-Kelvin temperatures,” Nat. Commun. 2, 328 (2011). [CrossRef]
  22. R. Schwartz, N. Naka, F. Kieseling, H. Stolz, “Dynamics of excitons in a potential trap at ultra-low temperatures: paraexcitons in Cu2O,” New J. Phys. 14, 023054 (2012). [CrossRef]
  23. K. E. O’Hara, L. Ó. Súilleabháin, J. P. Wolfe, “Strong nonradiative recombination of excitons in Cu2O and its impact on Bose-Einstein statistics,” Phys. Rev. B 60, 10565–10568 (1999). [CrossRef]
  24. K. Yoshioka, T. Ideguchi, A. Mysyrowicz, M. Kuwata-Gonokami, “Quantum inelastic collisions between paraexcitons in Cu2O,” Phys. Rev. B 82, 041201 (2010). [CrossRef]
  25. D. Meshulach, Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998). [CrossRef]
  26. D. Meshulach, Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999). [CrossRef]
  27. T. Ideguchi, K. Yoshioka, A. Mysyrowicz, M. Kuwata-Gonokami, “Coherent quantum control of excitons at ultracold and high density in Cu2O with phase manipulated pulses,” Phys. Rev. Lett. 100, 233001 (2008). [CrossRef]
  28. R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734–738 (2003). [CrossRef] [PubMed]
  29. T. Suzuki, R. Shimano, “Time-resolved formation of excitons and electron-hole droplets in Si studied using terahertz spectroscopy,” Phys. Rev. Lett. 103, 057401 (2009). [CrossRef] [PubMed]
  30. T. Tayagaki, A. Mysyrowicz, M. Kuwata-Gonokami, “Collisions between supercooled excitons in Cu2O studied by time-resolved Lyman spectroscopy,” Phys. Rev. B 74, 245127 (2006). [CrossRef]
  31. J. W. Hodby, T. E. Jenkins, C. Schwab, H. Tamura, D. Trivich, “Cyclotron resonance of electrons and of holes in cuprous oxide, Cu2O,” J. Phys. C Solid State Phys. 9, 1429–1439 (1976). [CrossRef]
  32. K. Yoshioka, T. Ideguchi, M. Kuwata-Gonokami, “Laser-based continuous-wave excitonic Lyman spectroscopy in Cu2O,” Phys. Rev. B 76, 033204 (2007). [CrossRef]
  33. J. Brandt, D. Frölich, C. Sandfort, M. Bayer, H. Stolz, N. Naka, “Ultranarrow optical absorption and two-phonon excitation spectroscopy of Cu2O paraexcitons in a high magnetic field,” Phys. Rev. Lett. 99, 217403 (2007). [CrossRef]
  34. D. W. Snoke, J. P. Wolfe, A. Mysyrowicz, “Quantum saturation of a Bose gas: excitons in Cu2O,” Phys. Rev. Lett. 59, 827–830 (1987). [CrossRef] [PubMed]
  35. M. Kubouchi, K. Yoshioka, R. Shimano, A. Mysyrowicz, M. Kuwata-Gonokami, “Study of orthoexciton-to-paraexciton conversion in Cu2O by excitonic Lyman spectroscopy,” Phys. Rev. Lett. 94, 016403 (2005). [CrossRef]
  36. S. E. Mani, J. I. Jang, J. B. Ketterson, “Large third-order susceptibility and third-harmonic generation in centrosymmetric Cu2O crystal,” Opt. Lett. 34, 2817–2819 (2009). [CrossRef] [PubMed]
  37. S. A. Moskalenko, D. W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons (Cambridge University, 2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited