OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3271–3283

Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation

Joshua Hendrickson, Richard Soref, Julian Sweet, and Walter Buchwald  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3271-3283 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4282 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Design and simulation results are presented for an ultralow switching energy, resonator based, silicon-on-insulator (SOI) electro-optical modulator. The nanowire waveguide and Q ~8500 resonator are seamlessly integrated via a high-transmission tapered 1D photonic crystal cavity waveguide structure. A lateral p-n junction of modulation length Lm ~λ is used to alter the index of refraction and, therefore, shift the resonance wavelength via fast carrier depletion. Differential signaling of the device with ΔV ~0.6 Volts allows for a 6dB extinction ratio at telecom wavelengths with an energy cost as low as 14 attojoules/bit.

© 2014 Optical Society of America

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(250.7360) Optoelectronics : Waveguide modulators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: November 27, 2013
Revised Manuscript: January 17, 2014
Manuscript Accepted: January 19, 2014
Published: February 4, 2014

Joshua Hendrickson, Richard Soref, Julian Sweet, and Walter Buchwald, "Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation," Opt. Express 22, 3271-3283 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011). [CrossRef] [PubMed]
  2. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997). [CrossRef]
  3. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express15(6), 3140–3148 (2007). [CrossRef] [PubMed]
  4. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18(15), 15859–15869 (2010). [CrossRef] [PubMed]
  5. T. Tanabe, E. Kuramochi, H. Taniyama, and M. Notomi, “Electro-optic adiabatic wavelength shifting and Q switching demonstrated using a p-i-n integrated photonic crystal nanocavity,” Opt. Lett.35(23), 3895–3897 (2010). [CrossRef] [PubMed]
  6. B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photon. Technol. Lett.23(14), 992–994 (2011). [CrossRef]
  7. V. J. Sorger, “λ-size silicon-based modulator,” invited paper 8629–23, SPIE Proceedings vol. 8629, Silicon Photonics VIII, SPIE Photonics West, San Francisco, 5 Feb 2013.
  8. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010). [CrossRef]
  9. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express18(8), 7994–7999 (2010). [CrossRef] [PubMed]
  10. M. Nedeljkovic, R. A. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14 μm infrared wavelength range,” IEEE Photonics Journal3(6), 1171–1180 (2011). [CrossRef]
  11. M. Nedeljkovic, R. A. Soref, and G. Z. Mashanovich, “Free-carrier electro-absorption and electro-refraction modulation in group IV materials at mid-infrared wavelengths,” SPIE Photonics West, paper 8266–31, San Jose, CA (25 Jan 2012).
  12. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express19(27), 26017–26026 (2011). [CrossRef] [PubMed]
  13. D. A. B. Miller, “Energy Consumption in optical modulators for interconnects,” Opt. Express20(S2Suppl 2), A293–A308 (2012). [CrossRef] [PubMed]
  14. S. P. Anderson and M. Philippe, Fauchet, “Conformal P-N Junctions for Low Energy Electro-optic Switching,” OSA/CLEO/IQEC (2009).
  15. S. Meister, H. Rhee, A. Al-Saadi, B. A. Franke, S. Kupijai, C. Theiss, L. Zimmermann, B. Tillack, H. H. Richter, H. Tian, D. Stolarek, T. Schneider, U. Woggon, and H. J. Eichler, “Matching p-i-n-junctions and optical modes enables fast and ultra-small silicon modulators,” Opt. Express21(13), 16210–16221 (2013). [CrossRef] [PubMed]
  16. T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express21(10), 11869–11876 (2013). [CrossRef] [PubMed]
  17. D. Marris-Morini, C. Baudot, J.-M. Fédéli, G. Rasigade, N. Vulliet, A. Souhaité, M. Ziebell, P. Rivallin, S. Olivier, P. Crozat, X. Le Roux, D. Bouville, S. Menezo, F. Bœuf, and L. Vivien, “Low loss 40 Gbit/s silicon modulator based on interleaved junctions and fabricated on 300 mm SOI wafers,” Opt. Express21(19), 22471–22475 (2013). [CrossRef] [PubMed]
  18. J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, and M. Yu, “Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator,” Opt. Express20(7), 7081–7087 (2012). [CrossRef] [PubMed]
  19. H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express20(12), 12926–12938 (2012). [CrossRef] [PubMed]
  20. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012). [CrossRef] [PubMed]
  21. K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express20(25), 27420–27428 (2012). [CrossRef] [PubMed]
  22. H.-C. Liu and A. Yariv, “Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators,” Opt. Express20(8), 9249–9263 (2012). [CrossRef] [PubMed]
  23. C. Qiu, J. Chen, and Q. Xu, “Ultraprecise measurement of resonance shift for sensing applications,” Opt. Lett.37(23), 5012–5014 (2012). [CrossRef] [PubMed]
  24. R. A. Soref, J. Guo, and G. Sun, “Low-energy MOS depletion modulators in silicon-on-insulator micro-donut resonators coupled to bus waveguides,” Opt. Express19(19), 18122–18134 (2011). [CrossRef] [PubMed]
  25. W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express21(3), 3861–3871 (2013). [CrossRef] [PubMed]
  26. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express19(22), 21989–22003 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited