OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3284–3295

Three-dimensional analysis of optical forces generated by an active tractor beam using radial polarization

Luis Carretero, Pablo Acebal, and Salvador Blaya  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3284-3295 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4272 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically study the three-dimensional behavior of nanoparticles in an active optical conveyor. To do this, we solved the Langevin equation when the forces are generated by a focusing system at the near field. Analytical expressions for the optical forces generated by the optical conveyor were obtained by solving the Richards and Wolf vectorial diffraction integrals in an approximated form when a mask of two annular pupils is illuminated by a radially polarized Hermite-Gauss beam. Trajectories, in both the transverse plane and the longitudinal direction, are analyzed showing that the behavior of the optical conveyor can be optimized by conveniently choosing the configuration of the mask of the two annular pupils (inner and outer radius of the two rings) in order to trap and transport all particles at the focal plane.

© 2014 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: December 5, 2013
Revised Manuscript: January 4, 2014
Manuscript Accepted: January 14, 2014
Published: February 4, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Luis Carretero, Pablo Acebal, and Salvador Blaya, "Three-dimensional analysis of optical forces generated by an active tractor beam using radial polarization," Opt. Express 22, 3284-3295 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation presure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  2. T. Cizmar, V. Garces-Chavez, K. Dholakia, P. Zemanek, “Optical conveyor belt for delivery submicron objects,” Appl. Phys. Lett. 86, 174101 (2005). [CrossRef]
  3. T. Cizmar, M. Siler, P. Zemanek, “An optical nanotrap array movable over a milimetre range,” Appl. Phys. B 84, 197–203 (2006). [CrossRef]
  4. G. Milne, H. Dholakia, D. McGloin, K. Volke-Sepulveda, P. Zemanek, “Transverse particle dynamics in a Bessel beam,” Opt. Express 15, 13972–13986 (2007). [CrossRef] [PubMed]
  5. M. Siler, P. Jakl, O. Brzobohaty, P. Zemanek, “Optical forces induced behavior of a particle in a non-diffracting vortex beam,” Opt. Express 20, 24304–24318 (2012). [CrossRef] [PubMed]
  6. N. Wang, J. Chen, S. Liu, Z. Lin, “Dynamical and phase study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87, 063812 (2013). [CrossRef]
  7. D. B. Ruffner, D. G. Grier, “Optical conveyors: a class of active tractor beams,” Phys. Rev. Lett. 109, 163903 (2012). [CrossRef] [PubMed]
  8. T. A. Nieminen, N. R. Heckenberg, H. Rubinstein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33, 122–124 (2008). [CrossRef] [PubMed]
  9. S. E. Skelton, M. Sergides, R. Saija, M. Iati, O. Marago, P. H. Jones, “Trapping volume control in optical tweezers using cylindrical vector beams,” Opt. Lett. 38, 28–30 (2013). [CrossRef] [PubMed]
  10. C. J. R. Sheppard, A. Choudhury, “Annular pupils, radial polarization and superresolution,” Appl. Opt. 43, 4322–4327 (2004). [CrossRef] [PubMed]
  11. Z. Chen, D. Zhao, “4 π focusing of spatially modulated radially polarized vortex beams,” Opt. Lett. 37, 1286–1288 (2012). [CrossRef] [PubMed]
  12. B. Richards, E. Wolf, “Electomagnetic diffraction of optical system II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959). [CrossRef]
  13. K. S. Youngworth, T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000). [CrossRef] [PubMed]
  14. P. C. Chaumet, M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagentic fiel,” Opt. Lett. 25, 1065–1067 (2000). [CrossRef]
  15. M. Nieto-Vesperinas, J. Sáenz, R. Gómez-Medina, L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18, 11428–11443 (2010). [CrossRef] [PubMed]
  16. V. Kajorndenukul, W. Ding, S. Sukhov, C.-W. Qiu, A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7, 787–790 (2013). [CrossRef]
  17. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1965).
  18. M. Borromeo, F. Marchesoni, “Brownian surfers,” Phys. Lett. A 249, 199–203 (1998). [CrossRef]
  19. P. Reimann, “Brownian motors: noisy transport far from equilibrium,” Phys. Rep. 361, 57–265 (2002). [CrossRef]
  20. M. Siler, T. Cizmar, A. Jonas, P. Zemanek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New J. Phys. 10, 113010 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited