OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3296–3305

Sensitivity enhancement through overlapping simultaneously excited Fano resonance modes of metallic-photonic-crystal sensors

Jian Zhang, Xinping Zhang, Xueqiong Su, Yi Lu, Shengfei Feng, and Li Wang  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3296-3305 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4208 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated enhancement of sensitivity of sensors based on metallic photonic crystals through tuning the thickness of the waveguide layer by pulsed laser deposition. Thicker waveguides made of InGaZnO allow double resonance of Fano coupling modes due to plasmonic-photonic interactions. Tuning the angle of incidence enables overlap between these doubly resonant modes, which induces much enlarged and spectrally narrowed sensor signals, leading to significantly enhanced sensitivity of the sensor device. The thickness of the waveguide layer is found to be a crucial structural parameter to improve sensitivity of the MPC sensors.

© 2014 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(220.4610) Optical design and fabrication : Optical fabrication
(230.7370) Optical devices : Waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:

Original Manuscript: December 4, 2013
Revised Manuscript: January 22, 2014
Manuscript Accepted: January 22, 2014
Published: February 4, 2014

Jian Zhang, Xinping Zhang, Xueqiong Su, Yi Lu, Shengfei Feng, and Li Wang, "Sensitivity enhancement through overlapping simultaneously excited Fano resonance modes of metallic-photonic-crystal sensors," Opt. Express 22, 3296-3305 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Haes, L. Chang, W. L. Klein, R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005). [CrossRef] [PubMed]
  2. J. Zhao, A. Das, X. Zhang, G. C. Schatz, S. G. Sligar, R. P. Van Duyne, “Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome P450,” J. Am. Chem. Soc. 128(34), 11004–11005 (2006). [CrossRef] [PubMed]
  3. P. Jia, H. Jiang, J. Sabarinathan, J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology 24(19), 195501 (2013). [CrossRef] [PubMed]
  4. N. Zhang, X. Su, P. Free, X. Zhou, K. G. Neoh, J. Teng, W. Knoll, “Plasmonic metal nanostructure array by glancing angle deposition for biosensing application,” Sens. Actuators B Chem. 183, 310–318 (2013). [CrossRef]
  5. A. Abbas, L. Tian, J. J. Morrissey, E. D. Kharasch, S. Singamaneni, “Hot spot-localized artificial antibodies for label-free plasmonic biosensing,” Adv. Funct. Mater. 23(14), 1789–1797 (2013). [CrossRef] [PubMed]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  7. K. M. Mayer, J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011). [CrossRef] [PubMed]
  8. S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007). [CrossRef] [PubMed]
  9. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006). [CrossRef] [PubMed]
  10. J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010). [CrossRef] [PubMed]
  11. J. C. Yang, J. Ji, J. M. Hogle, D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008). [CrossRef] [PubMed]
  12. R. Gordon, D. Sinton, K. L. Kavanagh, A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008). [CrossRef] [PubMed]
  13. J. Ji, J. G. O’Connell, D. J. D. Carter, D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008). [CrossRef] [PubMed]
  14. X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011). [CrossRef]
  15. X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, D. Nau, H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006). [CrossRef] [PubMed]
  16. X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, Z. G. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel) 12(12), 12082–12097 (2012). [CrossRef] [PubMed]
  17. X. P. Zhang, H. M. Liu, S. F. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology. 20, 425303 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited