OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3306–3315

Generation of achromatic, uniform-phase, radially polarized beams

Toshitaka Wakayama, Oscar G. Rodríguez-Herrera, J. Scott Tyo, Yukitoshi Otani, Motoki Yonemura, and Toru Yoshizawa  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3306-3315 (2014)
http://dx.doi.org/10.1364/OE.22.003306


View Full Text Article

Enhanced HTML    Acrobat PDF (6132 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Axially symmetric half-wave plates have been used to generate radially polarized beams that have constant phase in the plane transverse to propagation. However, since the retardance introduced by these waveplates depends on the wavelength, it is difficult to generate radially polarized beams achromatically. This paper describes a technique suitable for the generation of achromatic, radially polarized beams with uniform phase. The generation system contains, among other optical components, an achromatic, axially symmetric quarter-wave plate based on total internal reflection. For an incident beam with a constant phase distribution, the system generates a beam with an extra geometrical phase term. To generate a beam with the correct phase distribution, it is therefore necessary to have an incident optical vortex with an azimuthally varying phase distribution of the form exp( + iθ). We show theoretically that the phase component of radially polarized beam is canceled out by the phase component of the incident optical vortex, resulting in a radially polarized beam with uniform phase. Additionally, we present an experimental setup able to generate the achromatic, uniform-phase, radially polarized beam and experimental results that confirm that the generated beam has the correct phase distribution.

© 2014 Optical Society of America

OCIS Codes
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: December 9, 2013
Revised Manuscript: January 17, 2014
Manuscript Accepted: January 17, 2014
Published: February 4, 2014

Citation
Toshitaka Wakayama, Oscar G. Rodríguez-Herrera, J. Scott Tyo, Yukitoshi Otani, Motoki Yonemura, and Toru Yoshizawa, "Generation of achromatic, uniform-phase, radially polarized beams," Opt. Express 22, 3306-3315 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3306


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. R. Dennis, K. O'Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” in Progress in Optics (Elsevier, 2009).
  2. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009). [CrossRef]
  3. K. Youngworth, T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000). [CrossRef] [PubMed]
  4. A. V. Nesterov, V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phys. D Appl. Phys. 33(15), 1817–1822 (2000). [CrossRef]
  5. J. R. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983). [CrossRef]
  6. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010). [CrossRef] [PubMed]
  7. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011). [CrossRef] [PubMed]
  8. Y. Kozawa, S. Sato, “Single higher-order transverse mode operation of a radially polarized Nd:YAG laser using an annularly reflectivity-modulated photonic crystal coupler,” Opt. Lett. 33(19), 2278–2280 (2008). [CrossRef] [PubMed]
  9. M. Endo, “Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett. 33(15), 1771–1773 (2008). [CrossRef] [PubMed]
  10. M. Endo, M. Sasaki, R. Koseki, “Analysis of an optical resonator formed by a pair of specially shaped axicons,” J. Opt. Soc. Am. A 29(4), 507–512 (2012). [CrossRef] [PubMed]
  11. W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991). [CrossRef]
  12. R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  13. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007). [CrossRef] [PubMed]
  14. K. Yamane, Y. Toda, R. Morita, “Ultrashort optical-vortex pulse generation in few-cycle regime,” Opt. Express 20(17), 18986–18993 (2012). [CrossRef] [PubMed]
  15. Y. Tokizane, K. Oka, R. Morita, “Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion,” Opt. Express 17(17), 14517–14525 (2009). [CrossRef] [PubMed]
  16. Z. Bomzon, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79(11), 1587–1589 (2001). [CrossRef]
  17. M. Beresna, M. Gecevicius, P. G. Kazansky, T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011). [CrossRef]
  18. K. J. Moh, X. C. Yuan, J. Bu, R. E. Burge, B. Z. Gao, “Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams,” Appl. Opt. 46(30), 7544–7551 (2007). [CrossRef] [PubMed]
  19. Q. Zhan, J. R. Leger, “Microellipsometer with radial symmetry,” Appl. Opt. 41(22), 4630–4637 (2002). [CrossRef] [PubMed]
  20. T. Wakayama, K. Komaki, Y. Otani, T. Yoshizawa, “Achromatic axially symmetric wave plate,” Opt. Express 20(28), 29260–29265 (2012). [CrossRef] [PubMed]
  21. T. Wakayama, Y. Otani, T. Yoshizawa, “An interferometric observation of topological effect by novel axially symmetrical wave plate,” Proc. SPIE 8493, 849306 (2012). [CrossRef]
  22. G. A. Swartzlander., “Achromatic optical vortex lens,” Opt. Lett. 31(13), 2042–2044 (2006). [CrossRef] [PubMed]
  23. X. C. Yuan, J. Lin, J. Bu, R. E. Burge, “Achromatic design for the generation of optical vortices based on radial spiral phase plates,” Opt. Express 16(18), 13599–13605 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited