OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3316–3324

Liquid crystal-based square lens array with tunable focal length

Jiyoon Kim, Jonghyun Kim, Jun-Hee Na, Byoungho Lee, and Sin-Doo Lee  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3316-3324 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2414 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a liquid crystal (LC)-based square lens array with two focusing modes according to the polarization state of the input light. The homogeneously aligned LC layer is placed on an array of static square lenses fabricated using a photo-curable polymer whose refractive index is matched with the refractive index of the LC. For the input beam polarized parallel to the easy axis of the LC, the focal length is varied with the applied voltage from a few meters to 21 mm which corresponds to the focal length of the static lens. For the perpendicularly polarized input beam, the focal length is independent of the applied voltage and remains constant. The two focusing effects with high optical performance over fully activated areas are useful for polarization-dependent imaging systems and three-dimensional displays in projection and integral imaging.

© 2014 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.3720) Optical devices : Liquid-crystal devices
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Optical Devices

Original Manuscript: December 10, 2013
Revised Manuscript: January 27, 2014
Manuscript Accepted: January 28, 2014
Published: February 4, 2014

Jiyoon Kim, Jonghyun Kim, Jun-Hee Na, Byoungho Lee, and Sin-Doo Lee, "Liquid crystal-based square lens array with tunable focal length," Opt. Express 22, 3316-3324 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006). [CrossRef] [PubMed]
  2. H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett.82(1), 22–24 (2003). [CrossRef]
  3. H. Ren, J. R. Wu, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Hermaphroditic liquid-crystal microlens,” Opt. Lett.30(4), 376–378 (2005). [CrossRef] [PubMed]
  4. H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express20(3), 2045–2052 (2012). [CrossRef] [PubMed]
  5. Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett.91(22), 221113 (2007). [CrossRef]
  6. H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater.13(9), 732–738 (2003). [CrossRef]
  7. Y. Lu, Y. Yin, and Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater.13(1), 34–37 (2001). [CrossRef]
  8. C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, and F. Watt, “Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing,” Appl. Phys. B78(6), 705–709 (2004). [CrossRef]
  9. H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett.84(23), 4789–4791 (2004). [CrossRef]
  10. W. Choi, D.-W. Kim, and S.-D. Lee, “Liquid crystal lens array with high-fill-factor fabricated by an imprinting technique,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)508, 35–40 (2009). [CrossRef]
  11. Y. Li and S.-T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express19(9), 8045–8050 (2011). [CrossRef] [PubMed]
  12. Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010). [CrossRef]
  13. C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express20(4), 4738–4746 (2012). [CrossRef] [PubMed]
  14. L. Lucchetti and J. Tasseva, “Optically recorded tunable microlenses based on dye-doped liquid crystal cells,” Appl. Phys. Lett.100(18), 181111 (2012). [CrossRef]
  15. M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun.188(5–6), 291–299 (2001). [CrossRef]
  16. H. Ren, Y.-H. Fan, and S.-T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett.29(14), 1608–1610 (2004). [CrossRef] [PubMed]
  17. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express17(6), 4317–4323 (2009). [CrossRef] [PubMed]
  18. V. V. Presnyakov, K. E. Asatryan, T. V. Galstian, and A. Tork, “Polymer-stabilized liquid crystal for tunable microlens applications,” Opt. Express10(17), 865–870 (2002). [CrossRef] [PubMed]
  19. J.-H. Na, S. C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express20(2), 864–869 (2012). [CrossRef] [PubMed]
  20. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express18(13), 13981–13992 (2010). [CrossRef] [PubMed]
  21. J.-H. Lee, H.-R. Kim, and S.-D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett.75(6), 859–861 (1999). [CrossRef]
  22. D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett.88(20), 203505 (2006). [CrossRef]
  23. J. Hong, Y. Kim, S.-G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express18(20), 20628–20637 (2010). [CrossRef] [PubMed]
  24. Y. Kim, K. Hong, J. Yeom, J. Hong, J.-H. Jung, Y. W. Lee, J.-H. Park, and B. Lee, “A frontal projection-type three-dimensional display,” Opt. Express20(18), 20130–20138 (2012). [CrossRef] [PubMed]
  25. J. Kim, J.-H. Na, and S.-D. Lee, “Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting,” Opt. Express20(3), 3034–3042 (2012). [CrossRef] [PubMed]
  26. Data sheet of ZLI-1800–100 provided by Merck, Ltd.
  27. S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A33(2), 1270–1274 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited