OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3334–3348

High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback

M. Wienold, B. Röben, L. Schrottke, R. Sharma, A. Tahraoui, K. Biermann, and H. T. Grahn  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3334-3348 (2014)
http://dx.doi.org/10.1364/OE.22.003334


View Full Text Article

Enhanced HTML    Acrobat PDF (4530 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Currently, different competing waveguide and resonator concepts exist for terahertz quantum-cascade lasers (THz QCLs). We examine the continuous-wave (cw) performance of THz QCLs with single-plasmon (SP) and metal-metal (MM) waveguides fabricated from the same wafer. While SP QCLs are superior in terms of output power, the maximum operating temperature for MM QCLs is typically much higher. For SP QCLs, we observed cw operation up to 73 K as compared to 129 K for narrow (≤ 15 μm) MM QCLs. In the latter case, single-mode operation and a narrow beam profile were achieved by applying third-order distributed-feedback gratings and contact pads which are optically insulated from the intended resonators. We present a quantitative analytic model for the beam profile, which is based on experimentally accessible parameters.

© 2014 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Terahertz optics

History
Original Manuscript: October 14, 2013
Revised Manuscript: December 18, 2013
Manuscript Accepted: January 18, 2014
Published: February 5, 2014

Citation
M. Wienold, B. Röben, L. Schrottke, R. Sharma, A. Tahraoui, K. Biermann, and H. T. Grahn, "High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback," Opt. Express 22, 3334-3348 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3334


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007). [CrossRef]
  2. S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Topics Quantum Electron. 17, 38–47 (2011). [CrossRef]
  3. B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89–90 (2006). [CrossRef]
  4. M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, K. Unterrainer, “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions,” Appl. Phys. Lett. 103, 171113 (2013). [CrossRef]
  5. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μ m using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003). [CrossRef]
  6. B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005). [CrossRef] [PubMed]
  7. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012). [CrossRef] [PubMed]
  8. L. Mahler, A. Tredicucci, “Photonic engineering of surface-emitting terahertz quantum cascade lasers,” Laser & Photon. Rev. 5, 647–658 (2011).
  9. M. I. Amanti, G. Scalari, F. Castellano, M. Beck, J. Faist, “Low divergence terahertz photonic-wire laser,” Opt. Express 18, 6390–6395 (2010). [CrossRef] [PubMed]
  10. G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012). [CrossRef] [PubMed]
  11. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009). [CrossRef]
  12. S. Kohen, B. S. Williams, Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005). [CrossRef]
  13. G. Scalari, N. Hoyler, M. Giovannini, J. Faist, “Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction,” Appl. Phys. Lett. 86, 181101 (2005). [CrossRef]
  14. M. S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, “Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations,” Appl. Phys. Lett. 89, 021111 (2006). [CrossRef]
  15. M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013). [CrossRef]
  16. T.-Y. Kao, Q. Hu, J. L. Reno, “Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers,” Opt. Lett. 37, 2070–2072 (2012). [CrossRef] [PubMed]
  17. E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96, 173904 (2006). [CrossRef] [PubMed]
  18. W. L. Stutzman, G. A. Thiele, Antenna theory and design (Wiley, 2009).
  19. J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013). [CrossRef]
  20. M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009). [CrossRef]
  21. A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90, 101107 (2007). [CrossRef]
  22. M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” N. J. Phys. 11, 125022 (2009). [CrossRef]
  23. M. Wienold, A. Tahraoui, L. Schrottke, R. Sharma, X. Lü, K. Biermann, R. Hey, H. T. Grahn, “Lateral distributed-feedback gratings for single-mode, high-power terahertz quantum-cascade lasers,” Opt. Express 20, 11207–11217 (2012). [CrossRef] [PubMed]
  24. K. Biermann, E. A. Cerda-Méndez, M. Höricke, P. V. Santos, R. Hey, “Controlled growth of exciton-polariton microcavities using in situ spectral reflectivity measurements,” J. Cryst. Growth 323, 56–59 (2011). [CrossRef]
  25. J. Faist, “Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits,” Appl. Phys. Lett. 90, 253512 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited