OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3349–3355

Direct rapid-prototyping fabrication of computer-generated volume holograms in the millimeter-wave and terahertz regime

Wei-Ren Ng, Dathon R. Golish, Hao Xin, and Michael E. Gehm  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3349-3355 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1075 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Computer-generated volume holograms (CGVHs) are gradient refractive index (GRIN) devices that consist of a superposition of multiple periodic diffraction gratings. Fabrication of these components for the visible range is difficult due to the small length-scale requirements but is more tenable in the terahertz (THz), as the length scales become more practical (≥ 10−5 m). We successfully utilized polymer-based 3D additive rapid-prototyping technology to fabricate, to our knowledge, the world’s first 3D THz CGVH in approximately 50 minutes, using $12 of consumables. This demonstration suggests that this technique could be extended to fabricate THz volumetric optics with arbitrary electromagnetic profiles.

© 2014 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(220.4610) Optical design and fabrication : Optical fabrication
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Laser Microfabrication

Original Manuscript: November 15, 2013
Revised Manuscript: January 24, 2014
Manuscript Accepted: January 27, 2014
Published: February 5, 2014

Wei-Ren Ng, Dathon R. Golish, Hao Xin, and Michael E. Gehm, "Direct rapid-prototyping fabrication of computer-generated volume holograms in the millimeter-wave and terahertz regime," Opt. Express 22, 3349-3355 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Chan, J. Deibel, D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
  2. T. Löffler, T. Bauer, K. Siebert, H. Roskos, A. Fitzgerald, S. Czasch, “Terahertz dark-field imaging of biomedical tissue,” Opt. Express 9(12), 616–621 (2001). [CrossRef] [PubMed]
  3. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004). [CrossRef]
  4. D. Mittleman, “Terahertz Imaging,” in Sensing with Terahertz Radiation, D. Mittleman, ed. (Springer Berlin Heidelberg, 2003), Vol. 85, pp. 117–153.
  5. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002). [CrossRef]
  6. M. C. Kemp, P. Taday, B. E. Cole, J. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” in AeroSense 2003, (International Society for Optics and Photonics, 2003), 44–52.
  7. W. R. Tribe, D. A. Newnham, P. F. Taday, and M. C. Kemp, “Hidden object detection: security applications of terahertz technology,” in Integrated Optoelectronic Devices 2004, (International Society for Optics and Photonics, 2004), 168–176.
  8. C. Baker, W. R. Tribe, B. E. Cole, and M. C. Kemp, “Developments in people-screening using terahertz technology,” in European Symposium on Optics and Photonics for Defence and Security, (International Society for Optics and Photonics, 2004), 61–68.
  9. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005). [CrossRef]
  10. P. de Maagt, R. Gonzalo, Y. C. Vardaxoglou, J.-M. Baracco, “Electromagnetic bandgap antennas and components for microwave and (sub) millimeter wave applications,” IEEE Trans. Antenn. Propag. 51(10), 2667–2677 (2003). [CrossRef]
  11. B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002). [CrossRef] [PubMed]
  12. E. R. Mueller, “Terahertz radiation: applications and sources,” Indust. Phys. 9, 27–30 (2003).
  13. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003). [CrossRef] [PubMed]
  14. M. B. Campbell and E. J. Heilweil, “Noninvasive detection of weapons of mass destruction using terahertz radiation,” in AeroSense 2003, (International Society for Optics and Photonics, 2003), 38–43.
  15. G. Kiriakidis, N. Katsarakis, “Fabrication of 2-D and 3-D photonic band-gap crystals in the GHz and THz regions,” Mater. Phys. Mech. 1, 20–26 (2000).
  16. Z. Wu, J. Kinast, M. E. Gehm, H. Xin, “Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures,” Opt. Express 16(21), 16442–16451 (2008). [CrossRef] [PubMed]
  17. Z. Wu, W.-R. Ng, M. E. Gehm, H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express 19(5), 3962–3972 (2011). [CrossRef] [PubMed]
  18. J. W. Goodman, Introduction to Fourier optics (Roberts & Company Publishers, 2005).
  19. G. Tricoles, “Computer generated holograms: an historical review,” Appl. Opt. 26(20), 4351–4357 (1987). [CrossRef] [PubMed]
  20. W.-H. Lee, “III Computer-Generated Holograms: Techniques and Applications,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1978), Vol. 16, pp. 119–232.
  21. J. Rosen, M. Segev, A. Yariv, “Wavelength-multiplexed computer-generated volume holography,” Opt. Lett. 18(9), 744–746 (1993). [CrossRef] [PubMed]
  22. W. Cai, T. J. Reber, R. Piestun, “Computer-generated volume holograms fabricated by femtosecond laser micromachining,” Opt. Lett. 31(12), 1836–1838 (2006). [CrossRef] [PubMed]
  23. D. Psaltis, “Coherent Optical Information Systems,” Science 298(5597), 1359–1363 (2002). [CrossRef] [PubMed]
  24. A. Kozma, “One-dimensional Holograms for Storing Digital Data,” Topical Meeting on Optical Storage of Digital Data Digest of Technical Papers, Optical Society of America, March 1973.
  25. L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004). [CrossRef]
  26. V. Markov, J. Millerd, J. Trolinger, M. Norrie, J. Downie, D. Timucin, “Multilayer volume holographic optical memory,” Opt. Lett. 24(4), 265–267 (1999). [CrossRef] [PubMed]
  27. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000). [CrossRef]
  28. D. Brady, A. G.-S. Chen, G. Rodriguez, “Volume holographic pulse shaping,” Opt. Lett. 17(8), 610–612 (1992). [CrossRef] [PubMed]
  29. G. Barbastathis, M. Balberg, D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24(12), 811–813 (1999). [CrossRef] [PubMed]
  30. W. Liu, G. Barbastathis, D. Psaltis, “Volume Holographic Hyperspectral Imaging,” Appl. Opt. 43(18), 3581–3599 (2004). [CrossRef] [PubMed]
  31. C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004). [CrossRef]
  32. Z. Wu, L. Wang, Y. Peng, A. Young, S. Seraphin, H. Xin, “Terahertz characterization of multi-walled carbon nanotube films,” J. Appl. Phys. 103(9), 094324 (2008). [CrossRef]
  33. P. Hariharan, Optical Holography: Principles, techniques and applications (Cambridge University, 1996), Vol. 20.
  34. G. Cochran, “New method of making Fresnel transforms with incoherent light,” J. Opt. Soc. Am. 56(11), 1513–1517 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited