OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3356–3361

Laser parallel nanofabrication by single femtosecond pulse near-field ablation using photoresist masks

Florin Jipa, Adrian Dinescu, Mihaela Filipescu, Iulia Anghel, Marian Zamfirescu, and Razvan Dabu  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3356-3361 (2014)
http://dx.doi.org/10.1364/OE.22.003356


View Full Text Article

Enhanced HTML    Acrobat PDF (1501 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new near-field processing method by femtosecond laser ablation using photoresist enhancing masks is numerically and experimentally investigated. Periodical structures with 2 μm pitch, 1 μm width and 300 nm height, created in polymethyl methacrylate photoresist by e-beam lithography, were used to intensify the incident laser radiation. The near-field distribution and the intensification factor of the optical radiation were computed using the Finite-Difference-Time-Domain numerical simulations. The pattern of the photoresist mask was imprinted on the surface of a silicon wafer. Using a single infrared femtosecond laser pulse, uniform and continuum grooves with the width in the range of 250 nm were obtained on large silicon surface.

© 2014 Optical Society of America

OCIS Codes
(350.3390) Other areas of optics : Laser materials processing
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Laser Microfabrication

History
Original Manuscript: November 7, 2013
Revised Manuscript: January 21, 2014
Manuscript Accepted: January 21, 2014
Published: February 5, 2014

Citation
Florin Jipa, Adrian Dinescu, Mihaela Filipescu, Iulia Anghel, Marian Zamfirescu, and Razvan Dabu, "Laser parallel nanofabrication by single femtosecond pulse near-field ablation using photoresist masks," Opt. Express 22, 3356-3361 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3356


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Plech, P. Leiderer, J. Boneberg, “Femtosecond laser near field ablation,” Laser Photon. Rev. 5(3), 435–451 (2009). [CrossRef]
  2. Z. B. Wang, N. Joseph, L. Li, B. S. Luk’yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” Proc. Inst. Mech. Eng. Part C. 224(5), 1113–1127 (2010). [CrossRef]
  3. A. Gorbunov, W. Pompe, “Thin Film Nanoprocessing by Laser/STM Combination,” Phys. Status Solidi, A Appl. Res. 145(2), 333–338 (1994). [CrossRef]
  4. K. Piglmayer, R. Denk, D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002). [CrossRef]
  5. B. G. Prevo, O. D. Velev, “Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions,” Langmuir 20(6), 2099–2107 (2004). [CrossRef] [PubMed]
  6. R. Kunz, M. Rothschild, M. Yeung, “Large-area patterning of ~50 nm structures on flexible substrates using near-field 193 nm radiation,” J. Vac. Sci. Technol. B 21(1), 78 (2003). [CrossRef]
  7. M. Ulmeanu, M. Zamfirescu, L. Rusen, C. Luculescu, A. Moldovan, A. Stratan, R. Dabu, “Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation,” J. Appl. Phys. 106(11), 114908 (2009). [CrossRef]
  8. W. Cai, R. Piestun, “Patterning of silica microsphere monolayers with focused femtosecond laser pulses,” Appl. Phys. Lett. 88(11), 111112 (2006). [CrossRef]
  9. W. Guo, Z. Wang, L. Li, D. Whitehead, B. Luk’yanchuk, Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007). [CrossRef]
  10. E. Betzig, J. Trautman, R. Wolfe, E. Gyorgy, P. Finn, M. H. Kryder, C. Chang, “Nearfield magnetooptics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992). [CrossRef]
  11. R. Riehn, A. Charas, J. Morgado, F. Cacialli, “Near-field optical lithography of a conjugated polymer,” Appl. Phys. Lett. 82(4), 526–528 (2003). [CrossRef]
  12. E. McLeod, C. B. Arnold, “Array-based optical nanolithography using optically trapped microlenses,” Opt. Express 17(5), 3640–3650 (2009). [CrossRef] [PubMed]
  13. S. Maruo, O. Nakamura, S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997). [CrossRef] [PubMed]
  14. A. Taflove and S. Hagness Computational Electrodynamics, The Finite-Difference Time-Domain Method, (Artech House, Boston, 2005).
  15. R. K. Harrison, A. Ben-Yakar, “Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate: reply,” Opt. Express 19(7), 6179–6181 (2011). [CrossRef]
  16. S. Lecler, Y. Takakura, P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005). [CrossRef] [PubMed]
  17. C. V. Shank, R. Yen, C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983). [CrossRef]
  18. D. Eversole, B. Luk’yanchuk, A. Ben-yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007). [CrossRef]
  19. B. S. Lukyanchuk, N. Arnold, S. M. Huang, Z. B. Wang, M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).
  20. L. Urech and T. Lippert, Photochemistry and Photophysics of Polymer Materials, (Wiley, 2010), Chap 14.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited