OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3393–3404

Model laser damage precursors for high quality optical materials

Nan Shen, Jeff D. Bude, and Christopher W. Carr  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3393-3404 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3692 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface damage is known to occur at fluences well below the intrinsic limit of the fused silica. A native surface precursor can absorb sub band-gap light and initiate a process which leads to catastrophic damage many micrometers deep with prominent fracture networks. Previously, the absorption front model of damage initiation has been proposed to explain how this nano-scale absorption can lead to macro-scale damage. However, model precursor systems designed to study initiation experimentally have not been able to clearly reproduce these damage events. In our study, we create artificial absorbers on fused silica substrates to investigate precursor properties critical for native surface damage initiation. Thin optically absorbing films of different materials were deposited on silica surfaces and then damage tested and characterized. We demonstrated that strong interfacial adhesion strength between absorbers and silica is crucial for the launch of an absorption front and subsequent damage initiation. Simulations using the absorption-front model are performed and agree qualitatively with experimental results.

© 2014 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.4670) Materials : Optical materials
(160.6030) Materials : Silica

ToC Category:

Original Manuscript: November 15, 2013
Revised Manuscript: January 3, 2014
Manuscript Accepted: January 14, 2014
Published: February 5, 2014

Nan Shen, Jeff D. Bude, and Christopher W. Carr, "Model laser damage precursors for high quality optical materials," Opt. Express 22, 3393-3404 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012). [CrossRef] [PubMed]
  2. J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005). [CrossRef]
  3. P. Jonnard, G. Dufour, J. L. Rullier, J. P. Morreeuw, J. T. Donohue, “Surface density enhancement of gold in silica film under laser irradiation at 355 nm,” Appl. Phys. Lett. 85(4), 591–593 (2004). [CrossRef]
  4. S. Palmier, J. L. Rullier, J. Capoulade, J. Y. Natoli, “Effect of laser irradiation on silica substrate contaminated by aluminum particles,” Appl. Opt. 47(8), 1164–1170 (2008). [CrossRef] [PubMed]
  5. S. Papernov, A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92(10), 5720–5728 (2002). [CrossRef]
  6. H. Bercegol, F. Bonneau, P. Bouchut, P. Combis, J. Donohue, L. Gallais, L. Lamaignere, C. Le Diraison, M. Loiseau, J. Y. Natoli, C. Pelle, M. Perra, J. L. Rullier, J. Vierne, and H. Ward, “Laser ablation of fused silica induced by gold nano-particles comparison of simulations and experiments at lambda=351 nm,” in High-Power Laser Ablation Iv, Pts 1 and 2 (SPIE, 2002), pp. 1055–1066.
  7. M. J. Matthews, N. Shen, J. Honig, J. D. Bude, A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013). [CrossRef]
  8. F. Y. Genin, K. Michlitsch, J. Furr, M. R. Kozlowski, P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126 (1996).
  9. F. Y. Genin, A. M. Rubenchik, A. K. Burnhan, M. D. Feit, J. Yoshiyama, A. Fornier, C. Cordillot, D. Schirmann, “Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm,” Proc. SPIE 3492, 212–218 (1998).
  10. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011). [CrossRef]
  11. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010). [CrossRef] [PubMed]
  12. C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006). [CrossRef]
  13. C. W. Carr, D. A. Cross, M. A. Norton, R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4Suppl 4), A859–A864 (2011). [CrossRef] [PubMed]
  14. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004). [CrossRef] [PubMed]
  15. M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006). [CrossRef]
  16. R. A. Negres, M. A. Norton, D. A. Cross, C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010). [CrossRef] [PubMed]
  17. R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012). [CrossRef] [PubMed]
  18. C. W. Carr, J. D. Bude, P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010). [CrossRef]
  19. B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, J. Bude, “First-Principles Calculations of the Urbach Tail in the Optical Absorption Spectra of Silica Glass,” Phys. Rev. Lett. 106(2), 027401 (2011). [CrossRef] [PubMed]
  20. R. N. Raman, S. Elhadj, R. A. Negres, M. J. Matthews, M. D. Feit, S. G. Demos, “Characterization of ejected fused silica particles following surface breakdown with nanosecond pulses,” Opt. Express 20(25), 27708–27724 (2012). [CrossRef] [PubMed]
  21. K. Takahashi, H. Ishii, Y. Takahashi, K. Nishiguchi, “Valence auger analysis of the annealing effect on atomic interaction at titanium sapphire, titanium silica and silver silica interfaces,” Thin Solid Films 221(1-2), 98–103 (1992). [CrossRef]
  22. K. L. Mittal and A. Pizzi, Adhesion Promotion Techniques: Technological Applications (Marcel Dekker, 1999).
  23. H. G. Francois-Saint-Cyr, F. A. Stevie, J. M. McKinley, K. Elshot, L. Chow, K. A. Richardson, “Diffusion of 18 elements implanted into thermally grown SiO2,” J. Appl. Phys. 94(12), 7433–7439 (2003). [CrossRef]
  24. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: Application to aluminum,” Appl. Opt. 34(22), 4755–4767 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited