OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3405–3413

Imaging blood cells through scattering biological tissue using speckle scanning microscopy

Xin Yang, Ye Pu, and Demetri Psaltis  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3405-3413 (2014)
http://dx.doi.org/10.1364/OE.22.003405


View Full Text Article

Enhanced HTML    Acrobat PDF (2235 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate imaging of blood cells enclosed in chicken skin tissue using speckle scanning microscopy (SSM). Clear images of multiple cells were obtained with subcellular resolution and good image fidelity, provided that the object dimension was smaller than the maximum scanning range of the speckle pattern. These results point to the potential and the challenges of using SSM technique for biological imaging.

© 2014 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Microscopy

History
Original Manuscript: December 3, 2013
Revised Manuscript: January 14, 2014
Manuscript Accepted: January 31, 2014
Published: February 5, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Xin Yang, Ye Pu, and Demetri Psaltis, "Imaging blood cells through scattering biological tissue using speckle scanning microscopy," Opt. Express 22, 3405-3413 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3405


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010). [CrossRef]
  2. O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011). [CrossRef]
  3. O. Katz, E. Small, Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012). [CrossRef]
  4. A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012). [CrossRef]
  5. H. X. He, Y. F. Guan, J. Y. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21(10), 12539–12545 (2013). [CrossRef] [PubMed]
  6. G. Lerosey, J. de Rosny, A. Tourin, M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007). [CrossRef] [PubMed]
  7. Z. Yaqoob, D. Psaltis, M. S. Feld, C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008). [CrossRef] [PubMed]
  8. C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18(20), 20723–20731 (2010). [CrossRef] [PubMed]
  9. X. Yang, C. L. Hsieh, Y. Pu, D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20(3), 2500–2506 (2012). [CrossRef] [PubMed]
  10. X. A. Xu, H. L. Liu, L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011). [CrossRef] [PubMed]
  11. K. Si, R. Fiolka, M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012). [CrossRef] [PubMed]
  12. Y. M. Wang, B. Judkewitz, C. A. Dimarzio, C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun 3, 928–936 (2012). [CrossRef] [PubMed]
  13. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013). [CrossRef] [PubMed]
  14. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun 1(6), 81–84 (2010). [CrossRef] [PubMed]
  15. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012). [CrossRef] [PubMed]
  16. T. Cižmár, K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun 3, 1027 (2012). [CrossRef] [PubMed]
  17. D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012). [CrossRef] [PubMed]
  18. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012). [CrossRef]
  19. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012). [CrossRef] [PubMed]
  20. S. C. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61(7), 834–837 (1988). [CrossRef] [PubMed]
  21. J. W. Goodman, “Some Fundamental Properties of Speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976). [CrossRef]
  22. J. R. Fienup, “Phase Retrieval Algorithms: a Comparison,” Appl. Opt. 21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  23. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998). [CrossRef] [PubMed]
  24. J. D. Bancroft, A. D. Floyd, and S. K. Suvarna, Bancroft's Theory and Practice of Histological Techniques (Churchill Livingstone Elsevier, 2013), Chap. 1.
  25. M. Neumann, D. Gabel, “Simple method for reduction of autofluorescence in fluorescence microscopy,” J. Histochem. Cytochem. 50(3), 437–439 (2002). [CrossRef] [PubMed]
  26. R. L. Cecil, L. Goldman, and A. I. Schafer, Goldman's Cecil Medicine (Elsevier, 2012), Chap. 7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited