OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3425–3431

Experimental demonstration of a reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators for optical signal processing

William S. Fegadolli, Liang Feng, Muhammad Mujeeb-U Rahman, José E. B. Oliveira, Vilson R. Almeida, and Axel Scherer  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3425-3431 (2014)
http://dx.doi.org/10.1364/OE.22.003425


View Full Text Article

Enhanced HTML    Acrobat PDF (1215 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have experimentally demonstrated a reconfigurable silicon thermo-optical device able to tailor its intrinsic spectral optical response by means of the thermo-optical control of individual and uncoupled resonant modes of micro-ring resonators. Preliminarily results show that the device’s optical response can be tailored to build up distinct and reconfigurable logic levels for optical signal processing, as well as control of overall figures of merit, such as free-spectral-range, extinction ratio and 3dB bandwidth. In addition, the micro-heaters on top of the ring resonators are able to tune the resonant wavelength with efficiency of 0.25 nm/mW within a range of up to 10 nm, as well as able to switch the resonant wavelength within fall and rise time of 15 μs.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.6840) Materials : Thermo-optical materials
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Optical Devices

History
Original Manuscript: January 16, 2014
Manuscript Accepted: January 24, 2014
Published: February 5, 2014

Citation
William S. Fegadolli, Liang Feng, Muhammad Mujeeb-U Rahman, José E. B. Oliveira, Vilson R. Almeida, and Axel Scherer, "Experimental demonstration of a reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators for optical signal processing," Opt. Express 22, 3425-3431 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3425


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Pavesi and G. Guillot, Optical Interconnects - The Silicon Approach (Springer-Verlag, Heidelberg, 2006).
  2. M. Lipson, “Guiding, modulating and emitting light on silicon - Challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005). [CrossRef]
  3. V. R. Almeida, R. R. Panepucci, M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  4. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  5. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011). [CrossRef] [PubMed]
  6. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011). [CrossRef] [PubMed]
  7. D. T. H. Tan, P. C. Sun, Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat Commun 1(8), 116 (2010). [CrossRef] [PubMed]
  8. T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” J. Lightwave Technol. 24(5), 2207–2218 (2006). [CrossRef]
  9. W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013). [CrossRef] [PubMed]
  10. M. Erdmanis, L. Karvonen, A. Säynätjoki, X. Tu, T. Y. Liow, Q. G. Lo, O. Vänskä, S. Honkanen, I. Tittonen, “Towards broad-bandwidth polarization-independent nanostrip waveguide ring resonators,” Opt. Express 21(8), 9974–9981 (2013). [CrossRef] [PubMed]
  11. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006). [CrossRef] [PubMed]
  12. X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett. 34(9), 1345–1347 (2009). [CrossRef] [PubMed]
  13. W. S. Fegadolli, S. H. Kim, P. A. Postigo, A. Scherer, “Hybrid single quantum well InP/Si nanobeam lasers for Silicon Photonics,” Opt. Lett. 38(22), 4656–4658 (2013). [CrossRef] [PubMed]
  14. T. Creazzo, E. Marchena, S. B. Krasulick, P. K. L. Yu, D. V. Orden, J. Y. Spann, C. C. Blivin, L. He, H. Cai, J. M. Dallesasse, R. J. Stone, A. Mizrahi, “Integrated tunable CMOS laser,” Opt. Express 21(23), 28048–28053 (2013). [CrossRef]
  15. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007). [CrossRef] [PubMed]
  16. S. Sahni, X. Luo, J. Liu, Y. H. Xie, E. Yablonovitch, “Junction field-effect-transistor-based germanium photodetector on silicon-on-insulator,” Opt. Lett. 33(10), 1138–1140 (2008). [CrossRef] [PubMed]
  17. S. Assefa, F. Xia, Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010). [CrossRef] [PubMed]
  18. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009). [CrossRef] [PubMed]
  19. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11(6), 2219–2224 (2011). [CrossRef] [PubMed]
  20. L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2012). [CrossRef] [PubMed]
  21. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011). [CrossRef]
  22. H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012). [CrossRef] [PubMed]
  23. W. S. Fegadolli, V. R. Almeida, J. E. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express 19(13), 12727–12739 (2011). [CrossRef] [PubMed]
  24. C. K. Madsen, G. Lenz, “Optical All-Pass Filters for Phase Response Design with Applications for Dispersion Compensation,” IEEE Photon. Technol. Lett. 10(7), 994–996 (1998). [CrossRef]
  25. W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express 20(13), 14722–14733 (2012). [CrossRef] [PubMed]
  26. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38(5), 733–735 (2013). [CrossRef] [PubMed]
  27. A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, A. Adibi, “Sub-100-nanosecond thermal reconfiguration of silicon photonic devices,” Opt. Express 21(13), 15706–15718 (2013). [CrossRef] [PubMed]
  28. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010). [CrossRef] [PubMed]
  29. A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited