OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3439–3446

Coupling of THz radiation with intervalence band transitions in microcavities

M. F. Pereira, Jr. and I. A. Faragai  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3439-3446 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (948 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The strong coupling of THz radiation and material excitations can improve the quantum efficiency of THz emitters. In this paper, we investigate THz polaritons and antipolaritons based on valence band transitions, which allow TE coupling in a simple configuration. The approach can improve the quantum efficiency of THz based devices based on TE mode in the strong coupling regime of THz radiations and intervalence bands transitions in a GaAs/AlGaAs quantum wells. A Nonequilibrium Many Body Approach for the optical response beyond the Hartree-Fock approximation is used as input to the effective dielectric function formalism for the polariton/antipolariton problem. The energy dispersion relations in the THz range are obtained by adjusting the full numerical solutions to simple analytical expressions, which can be used for non specialists in a wide number of new structures and material systems. The combination of manybody and nonparabolicity at high densities leads to dramatic changes in the polariton spectra in a nonequilibrium configuration, which is only possible for intervalence band transitions.

© 2014 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(240.5420) Optics at surfaces : Polaritons
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Terahertz Optics

Original Manuscript: September 26, 2013
Revised Manuscript: December 10, 2013
Manuscript Accepted: January 9, 2014
Published: February 6, 2014

M. F. Pereira and I. A. Faragai, "Coupling of THz radiation with intervalence band transitions in microcavities," Opt. Express 22, 3439-3446 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Uhd Jepsen, D. G. Cooke, P. H. Siegel, “Introduction to the Special Issue on Terahertz Spectroscopy,” IEEE Trans. Terahertz Sci. Technol. 3(3), 237–238 (2013). [CrossRef]
  2. B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002). [CrossRef] [PubMed]
  3. M. Geiser, G. Scalari, M. Beck, C. Walther, J. Faist, L. C. Terahertz, “Terahertz LC microcavities: from quantum cascade lasers to ultrastrong light-matter coupling,” J. Infrared Millimeter Terahertz Waves 34(5–6), 393–404 (2013). [CrossRef]
  4. R. Houdré, “Early stages of continuous wave experiments on cavity-polaritons,” Phys. Status Solidi, B Basic Res. 242(11), 2167–2196 (2005). [CrossRef]
  5. D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
  6. A. Liu, “Rabi splitting of the optical intersubband absorption line of multiple quantum wellsinside a Fabry-Pérot microcavity,” Phys. Rev. B 55(11), 7101–7109 (1997). [CrossRef]
  7. D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, L. Sorba, “Microcavity polariton splitting of intersubband transitions,” Phys. Rev. Lett. 90(11), 116401 (2003). [CrossRef] [PubMed]
  8. A. A. Anappara, A. Tredicucci, F. Beltram, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, “Cavity polaritons from excited-subband transitions,” Appl. Phys. Lett. 91(23), 231118 (2007). [CrossRef]
  9. M. F. Pereira., “Intersubband antipolaritons: Microscopic approach,” Phys. Rev. B 75(19), 195301 (2007). [CrossRef]
  10. M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett. 108(10), 106402 (2012). [CrossRef] [PubMed]
  11. M. Geiser, G. Scalari, F. Castellano, M. Beck, J. Faist, “Room temperature terahertz polariton emitter,” Appl. Phys. Lett. 101(14), 141118 (2012). [CrossRef]
  12. M. F. Pereira, H. Wenzel, “Interplay of Coulomb and nonparabolicity effects in the intersubband absorption of electrons and holes in quantum wells,” Phys. Rev. B 70(20), 205331 (2004). [CrossRef]
  13. M. F. Pereira., “Intervalence transverse-electric mode terahertz lasing without population inversion,” Phys. Rev. B 78(24), 245305 (2008). [CrossRef]
  14. M. S. Vitiello, R. C. Iotti, F. Rossi, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, Q. Hu, G. Scamarcio, “Non-equilibrium longitudinal and transverse optical phonons in terahertz quantum cascade lasers,” Appl. Phys. Lett. 100(9), 091101 (2012). [CrossRef]
  15. A. Wacker, “Semiconductor Superlattices: A model system for nonlinear transport,” Phys. Rep. 357(1), 1–111 (2002). [CrossRef]
  16. T. Schmielau, M. F. Pereira., “Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers,” Appl. Phys. Lett. 95(23), 231111 (2009). [CrossRef]
  17. T. Schmielau, M.F. Pereira, “Impact of momentum dependent matrix elements on scattering effects in quantum cascade lasers,” Phys. Status Solidi B 246, 329 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited