OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3501–3513

Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps

Ahmed Abdelrahman, Tetsuya Mukai, Hartmut Häffner, and Tim Byrnes  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3501-3513 (2014)
http://dx.doi.org/10.1364/OE.22.003501


View Full Text Article

Enhanced HTML    Acrobat PDF (2296 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a hybrid architecture for quantum information processing based on magnetically trapped ultracold atoms coupled via optical fields. The ultracold atoms, which can be either Bose-Einstein condensates or ensembles, are trapped in permanent magnetic traps and are placed in microcavities, connected by silica based waveguides on an atom chip structure. At each trapping center, the ultracold atoms form spin coherent states, serving as a quantum memory. An all-optical scheme is used to initialize, measure and perform a universal set of quantum gates on the single and two spin-coherent states where entanglement can be generated addressably between spatially separated trapped ultracold atoms. This allows for universal quantum operations on the spin coherent state quantum memories. We give detailed derivations of the composite cavity system mediated by a silica waveguide as well as the control scheme. Estimates for the necessary experimental conditions for a working hybrid device are given.

© 2014 Optical Society of America

OCIS Codes
(020.1475) Atomic and molecular physics : Bose-Einstein condensates
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: October 17, 2013
Revised Manuscript: December 9, 2013
Manuscript Accepted: December 10, 2013
Published: February 6, 2014

Citation
Ahmed Abdelrahman, Tetsuya Mukai, Hartmut Häffner, and Tim Byrnes, "Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps," Opt. Express 22, 3501-3513 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3501


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, P. Zoller, “Hybrid quantum devices and quantum engineering,” Phys. Scr. T137, 014001 (2009). [CrossRef]
  2. G. Wilpers, P. See, P. Gill, A. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotechnol. 7, 572–576 (2012). [CrossRef] [PubMed]
  3. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450, 268–271 (2007). [CrossRef] [PubMed]
  4. J. Ye, D. Vernooy, H. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (1999). [CrossRef]
  5. A. Boozer, A. Boca, R. Miller, T. Northup, H. Kimble, “Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity,” Phys. Rev. Lett. 97, 083602 (2006). [CrossRef] [PubMed]
  6. S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012). [CrossRef] [PubMed]
  7. P. Pinkse, T. Fischer, P. Maunz, G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000). [CrossRef] [PubMed]
  8. M. Kohnen, M. Succo, P. Petrov, R. Nyman, M. Trupke, E. Hinds, “An array of integrated atom-photon junctions,” Nat. Photonics 5, 35–38 (2011). [CrossRef]
  9. A. Wallraff, D. Schuster, A. Blais, L. Frunzio, R. Huang, J. Majer, S. Kumar, S. Girvin, R. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef] [PubMed]
  10. D. Schuster, A. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. Morton, H. Wu, G. Briggs, B. Buckley, D. Awschalom, R. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010). [CrossRef]
  11. C. Eichler, C. Lang, J. Fink, J. Govenius, S. Filipp, A. Wallraff, “Observation of entanglement between itinerant microwave photons and a superconducting qubit,” Phys. Rev. Lett. 109, 240501 (2012). [CrossRef]
  12. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007). [CrossRef] [PubMed]
  13. P. Treutlein, T. Steinmetz, Y. Colombe, B. Lev, P. Hommelhoff, J. Reichel, M. Greiner, O. Mandel, A. Widera, T. Rom, I. Bloch, T. Hänsch, “Quantum information processing optical lattices and magnetic microtraps,” Fortschr. Phys. 54, 702 (2006). [CrossRef]
  14. P. Böhi, M. Riedel, J. Hoffrogge, J. Reichel, T. Haensch, P. Treutlein, “Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip,” Nat. Phys. 5, 592–597 (2009). [CrossRef]
  15. M. Riedel, P. Böhi, Y. Li, T. Hänsch, A. Sinatra, P. Treutlein, “Atom-chip-based generation of entanglement for quantum metrology,” Nature 464, 1170–1173 (2010). [CrossRef] [PubMed]
  16. A. Sørensen, L. Duan, J. Cirac, P. Zoller, “Many-particle entanglement with Bose-Einstein condensates,” Nature 409, 63–66 (2000). [CrossRef]
  17. T. Byrnes, K. Wen, Y. Yamamoto, “Macroscopic quantum computation using Bose-Einstein condensates,” Phys. Rev. A 85, 040306 (2012). [CrossRef]
  18. B. Julsgaard, A. Kozhekin, E. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001). [CrossRef] [PubMed]
  19. M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett. 106, 210503 (2011). [CrossRef] [PubMed]
  20. A. Pyrkov, T. Byrnes, “Entanglement generation in quantum networks of Bose-Einstein condensates,” New J. Phys. 15093019 (2013). [CrossRef]
  21. T. Byrnes, “Quantum computation using two component Bose-Einstein condensates,” World Acad. Sci. Eng. Technol. 63, 542 (2012).
  22. A. Pyrkov, T. Byrnes, “Quantum teleportation of spin coherent states,” arxiv:1305.2479.
  23. T. Byrnes, “Fractality and macroscopic entanglement in two-component Bose-Einstein condensates,” Phys. Rev. A 88, 023609 (2013). [CrossRef]
  24. A. Waxman, “Coherent manipulation of the Rubidium atom ground state,” M.Sc Thesis (Ben-Gurion University of the Negev, 2007).
  25. D. A. Steck, “Rubidium 87 D Line Data,” Los Alamos National Laboratory (2001).
  26. M. Singh, M. Volk, A. Akulshin, A. Sidorov, R. McLean, P. Hannaford, “One dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. B At. Mol. Opt. Phys. 41, 065301 (2008). [CrossRef]
  27. T. Fernholz, R. Gerritsma, S. Whitlock, I. Barb, R. Spreeuw, “Fully permanent magnet atom chip for Bose-Einstein condensation,” Phys. Rev. A 77, 033409 (2008). [CrossRef]
  28. S. Whitlock, R. Gerritsma, T. Fernholz, R. Spreeuw, “Two-dimensional array of microtraps with atomic shift register on a chip,” New J. Phys. 11, 023021 (2009). [CrossRef]
  29. A. Abdelrahman, M. Vasiliev, K. Alameh, P. Hannford, “Asymmetrical two-dimensional magnetic lattices for ultracold atoms,” Phys. Rev. A 82, 012320 (2010). [CrossRef]
  30. D. Press, T. Ladd, B. Zhang, Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008). [CrossRef] [PubMed]
  31. J. Matthews, A. Politi, A. Stefanov, J. OBrien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009). [CrossRef]
  32. M. Malak, N. Gaber, F. Marty, N. Pavy, E. Richalot, T. Bourouina, “Analysis of Fabry-Pérot optical micro-cavities based on coating-free all-Silicon cylindrical Bragg reflectors,” Opt. Express 21, 2378–2392 (2013). [CrossRef] [PubMed]
  33. M. Malak, F. Marty, N. Pavy, Y. Peter, A. Liu, T. Bourouina, “Cylindrical surfaces enable wavelength-selective extinction and sub-0.2 nm linewidth in 250μm-gap silicon Fabry-Perot cavities,” J. Microelectromech. Syst. 21(1), 171–180 (2012). [CrossRef]
  34. M. Malak, F. Marty, N. Pavy, Y. Peter, A. Liu, T. Bourouina, “Micromachined Fabry-Perot resonator combining submillimeter cavity length and high quality factor,” Appl. Phys. Lett. 98(21), 211113 (2011). [CrossRef]
  35. S. Nolte, M. Will, J. Burghoff, A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003). [CrossRef]
  36. G. Lepert, M. Trupke, E. Hinds, H. Rogers, J. Gates, P. Smith, “Demonstration of UV-written waveguides, Bragg gratings and cavities at 780 nm, and an original experimental measurement of group delay,” Opt. Express 19, 24933–24943 (2011). [CrossRef]
  37. J. Lepert, M. Trupke, M. Hartmann, M. Plenio, E. Hinds, “Arrays of waveguide-coupled optical cavities that interact strongly with atoms,” New J. Phys. 13, 113002 (2011). [CrossRef]
  38. M. Hijlkema, B. Weber, H. Specht, S. Webster, A. Kuhn, G. Rempe, “A single-photon server with just one atom,” Nature 3, 253–255 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited