OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3526–3537

Comparison of electromagnetically induced transparency between silver, gold, and aluminum metamaterials at visible wavelengths

Ryohei Hokari, Yoshiaki Kanamori, and Kazuhiro Hane  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3526-3537 (2014)
http://dx.doi.org/10.1364/OE.22.003526


View Full Text Article

Enhanced HTML    Acrobat PDF (3457 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electromagnetically induced transparency (EIT)-like effects in silver, gold, and aluminum metamaterials consisting of dipole resonators and quadrupole resonators were demonstrated at visible wavelengths. Optical characteristics of the metamaterials could be controlled by the gap distance between the two resonators. EIT-like effects were observed at wavelengths between 603 and 789 nm, 654 and 834 nm, and 462 and 693 nm for the silver, gold, and aluminum EIT metamaterials, respectively. At wavelengths longer than around 650 nm, the silver metamaterials had better EIT-like features. At wavelengths shorter than around 650 nm, on the other hand, the aluminum metamaterials showed promising EIT-like results.

© 2014 Optical Society of America

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Metamaterials

History
Original Manuscript: October 29, 2013
Revised Manuscript: December 30, 2013
Manuscript Accepted: February 2, 2014
Published: February 6, 2014

Citation
Ryohei Hokari, Yoshiaki Kanamori, and Kazuhiro Hane, "Comparison of electromagnetically induced transparency between silver, gold, and aluminum metamaterials at visible wavelengths," Opt. Express 22, 3526-3537 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3526


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47(11), 2075–2084 (1999). [CrossRef]
  2. A. Ishikawa, T. Tanaka, S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95(23), 237401 (2005). [CrossRef] [PubMed]
  3. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005). [CrossRef] [PubMed]
  4. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1–2), 219–227 (2006). [CrossRef]
  5. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008). [CrossRef] [PubMed]
  6. X. Xiong, W.-H. Sun, Y.-J. Bao, R.-W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z.-F. Li, N.-B. Ming, “Switching the electric and magnetic responses in a metamaterials,” Phys. Rev. B 80, 201105R (2009).
  7. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011). [CrossRef] [PubMed]
  8. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef] [PubMed]
  9. G. Dolling, M. Wegener, C. M. Soukoulis, S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15(18), 11536–11541 (2007). [CrossRef] [PubMed]
  10. C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81(3), 035320 (2010). [CrossRef]
  11. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008). [CrossRef] [PubMed]
  12. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009). [CrossRef] [PubMed]
  13. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [CrossRef] [PubMed]
  14. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012). [CrossRef] [PubMed]
  15. M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82(19), 193402 (2010). [CrossRef]
  16. H. Liu, G. X. Li, K. F. Li, S. M. Chen, S. N. Zhu, C. T. Chan, K. W. Cheah, “Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials,” Phys. Rev. B 84(23), 235437 (2011). [CrossRef]
  17. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef] [PubMed]
  18. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18(16), 17187–17192 (2010). [CrossRef] [PubMed]
  19. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010). [CrossRef] [PubMed]
  20. K. O’Brien, N. D. Lanzillotti-Kimura, H. Suchowski, B. Kante, Y. Park, X. Yin, X. Zhang, “Reflective interferometry for optical metamaterial phase measurements,” Opt. Lett. 37(19), 4089–4091 (2012). [CrossRef] [PubMed]
  21. S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef] [PubMed]
  22. Y. Lu, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18(20), 20912–20917 (2010). [CrossRef] [PubMed]
  23. S.-D. Liu, Z. Yang, R.-P. Liu, X.-Y. Li, “Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity,” Opt. Express 19(16), 15363–15370 (2011). [CrossRef] [PubMed]
  24. Y. Lu, X. Jin, S. Lee, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Passive and active control of a plasmonic mimic of electromagnetically induced transparency in stereometamaterials and planar metamaterials,” Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 045004 (2010).
  25. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009). [CrossRef] [PubMed]
  26. S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterials,” Phys. Rev. B 80(15), 153103 (2009). [CrossRef]
  27. T. J. Davis, D. E. Gómez, K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10(7), 2618–2625 (2010). [CrossRef] [PubMed]
  28. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008). [CrossRef] [PubMed]
  29. C. Wu, A. B. Khanikaev, G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011). [CrossRef] [PubMed]
  30. J. Kim, R. Soref, W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010). [CrossRef] [PubMed]
  31. L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013). [CrossRef]
  32. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: The radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012). [CrossRef] [PubMed]
  33. C.-Y. Chen, I.-W. Un, N.-H. Tai, T.-J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009). [CrossRef] [PubMed]
  34. A. D. Rakić, A. B. Djurišić, J. M. Elazar, M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  35. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 1780–1787 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited