OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3578–3584

Highly sensitive force sensor based on optical microfiber asymmetrical Fabry-Perot interferometer

Yuan Gong, Cai-Bin Yu, Ting-Ting Wang, Xiu-Ping Liu, Yu Wu, Yun-Jiang Rao, Ming-Lei Zhang, Hui-Juan Wu, Xiao-Xiao Chen, and Gang-Ding Peng  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3578-3584 (2014)
http://dx.doi.org/10.1364/OE.22.003578


View Full Text Article

Enhanced HTML    Acrobat PDF (1395 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An asymmetrical Fabry-Perot interferometric (AFPI) force sensor is fabricated based on a narrowband reflection of low-reflectivity fiber Bragg grating (LR-FBG) and a broadband Fresnel reflection of the cleaved fiber end. The AFPI sensor includes a section of microfiber made by tapering and it achieves a force sensitivity of 0.221pm/μN with a tapered microfiber of 40mm length and 6.1μm waist diameter. Compared with similar AFPI structure in 125μm-diameter single mode fiber, the force sensitivity of the microfiber AFPI structure is greatly enhanced due to its smaller diameter and can be optimized for different force scales by controlling the diameter. The fabrication process of the AFPI sensor is simple and cost-effective. The AFPI sensor has better multiplexing capacity than conventional extrinsic fiber-optic Fabry-Perot sensors, while it also release the requirement on the wavelength matching of the FBG-pair-based FPI.

© 2014 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.3990) Optical devices : Micro-optical devices
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Sensors

History
Original Manuscript: December 9, 2013
Revised Manuscript: January 25, 2014
Manuscript Accepted: January 29, 2014
Published: February 6, 2014

Citation
Yuan Gong, Cai-Bin Yu, Ting-Ting Wang, Xiu-Ping Liu, Yu Wu, Yun-Jiang Rao, Ming-Lei Zhang, Hui-Juan Wu, Xiao-Xiao Chen, and Gang-Ding Peng, "Highly sensitive force sensor based on optical microfiber asymmetrical Fabry-Perot interferometer," Opt. Express 22, 3578-3584 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3578


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, and C. Bechinger, “Direct measurement of critical Casimir forces,” Nature451(7175), 172–175 (2008). [CrossRef] [PubMed]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003). [CrossRef] [PubMed]
  3. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010). [CrossRef]
  4. Y. Gong, A. Y. Ye, Y. Wu, Y. J. Rao, Y. Yao, and S. Xiao, “Graded-index fiber tip optical tweezers: Numerical simulation and trapping experiment,” Opt. Express21(13), 16181–16190 (2013). [CrossRef] [PubMed]
  5. R. Kumar, H. Kumar, A. Kumar, and V. Kumar, “Long term uncertainty investigations of 1 MN force calibration machine at NPL, India (NPLI),” Meas. Sci. Rev.12(4), 149–152 (2012). [CrossRef]
  6. T. Guo, Q. Zhao, H. Zhang, L. Xue, G. Li, B. Dong, B. Liu, W. Zhang, G. Kai, and X. Dong, “Temperature-insensitive fiber Bragg grating force sensor via a bandwidth modulation and optical-power detection technique,” J. Lightwave Technol.24(10), 3797–3802 (2006). [CrossRef]
  7. Y. Q. Liu, K. S. Chiang, and P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry-Perot laser diode,” IEEE Photonics Technol. Lett.17(2), 450–452 (2005). [CrossRef]
  8. B. Dong, D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express16(23), 19291–19296 (2008). [CrossRef] [PubMed]
  9. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  10. L. Zhang, J. Y. Lou, and L. M. Tong, “Micro/nanofiber optical sensors,” Photonic Sens.1(1), 31–42 (2011). [CrossRef]
  11. F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008). [CrossRef] [PubMed]
  12. Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express17(20), 18142–18147 (2009). [CrossRef] [PubMed]
  13. K. M. Chung, Z. Liu, C. Lu, and H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photonics Technol. Lett.24(8), 700–702 (2012). [CrossRef]
  14. W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett.101(13), 133502 (2012). [CrossRef]
  15. T. Wieduwilt, S. Bruckner, and H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol.22(7), 075201 (2011). [CrossRef]
  16. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. M. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett.36(16), 3115–3117 (2011). [CrossRef] [PubMed]
  17. Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express19(19), 18577–18583 (2011). [CrossRef] [PubMed]
  18. S. Gao, L. Jin, Y. Ran, L. P. Sun, J. Li, and B. O. Guan, “Temperature compensated microfiber Bragg gratings,” Opt. Express20(16), 18281–18286 (2012). [CrossRef] [PubMed]
  19. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett.35(7), 1007–1009 (2010). [CrossRef] [PubMed]
  20. J. Li, X. Shen, L. P. Sun, and B. O. Guan, “Characteristics of microfiber Fabry-Perot resonators fabricated by UV exposure,” Opt. Express21(10), 12111–12121 (2013). [CrossRef] [PubMed]
  21. J. Zhang, Q. Sun, R. Liang, J. Wo, D. Liu, and P. Shum, “Microfiber Fabry-Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor,” Opt. Lett.37(14), 2925–2927 (2012). [CrossRef] [PubMed]
  22. Y. Wang, H. Bartelt, M. Becker, S. Brueckner, J. Bergmann, J. Kobelke, and M. Rothhardt, “Fiber Bragg grating inscription in pure-silica and Ge-doped photonic crystal fibers,” Appl. Opt.48(11), 1963–1968 (2009). [CrossRef] [PubMed]
  23. Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun.282(6), 1129–1134 (2009). [CrossRef]
  24. Y. Fujii, “Method of generating and measuring static small force using down-slope component of gravity,” Rev. Sci. Instrum.78(6), 066104 (2007). [CrossRef] [PubMed]
  25. K. Miyamoto, T. Jomori, K. Sugano, O. Tabata, and T. Tsuchiya, “Mechanical calibration of MEMS springs with sub-micro-Newton force resolution,” Sens. Actuators A Phys.143(1), 136–142 (2008).
  26. O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett.35(16), 2777–2779 (2010). [CrossRef] [PubMed]
  27. Y. J. Rao, X. K. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, and I. Bennion, “Temperature-strain discrimination sensor using a WDM chirped in-fibre Bragg grating and an extrinsic Fabry-Perot,” Chin. Phys. Lett.18(5), 643–645 (2011).
  28. Y. Yu, H. Tam, W. Chung, and M. S. Demokan, “Fiber Bragg grating sensor for simultaneous measurement of displacement and temperature,” Opt. Lett.25(16), 1141–1143 (2000). [CrossRef] [PubMed]
  29. J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Temperature-independent strain sensor made from tapered holey optical fiber,” Opt. Lett.31(3), 305–307 (2006). [CrossRef] [PubMed]
  30. X. Y. Dong, Y. Liu, Z. Liu, and X. Y. Dong, “Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor,” Opt. Commun.192(3–6), 213–217 (2001). [CrossRef]
  31. T. Guo, A. Ivanov, Ch. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett.33(9), 1004–1006 (2008). [CrossRef] [PubMed]
  32. Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol.12(3), 227–237 (2006). [CrossRef]
  33. M. Han, Y. Zhang, F. Shen, G. R. Pickrell, and A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors,” Opt. Lett.29(15), 1736–1738 (2004). [CrossRef] [PubMed]
  34. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express16(8), 5764–5769 (2008). [CrossRef] [PubMed]
  35. X. Wan and H. F. Taylor, “Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors,” Opt. Lett.27(16), 1388–1390 (2002). [CrossRef] [PubMed]
  36. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005). [CrossRef]
  37. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express14(14), 6394–6399 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited