OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3585–3592

Growth of low-defect-density nonpolar a-plane GaN on r-plane sapphire using pulse NH3 interrupted etching

Ji-Su Son, Yoshio Honda, and Hiroshi Amano  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3585-3592 (2014)
http://dx.doi.org/10.1364/OE.22.003585


View Full Text Article

Enhanced HTML    Acrobat PDF (2186 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonpolar a-plane (11-20) GaN (a-GaN) layers with low overall defect density and high crystalline quality were grown on r-plane sapphire substrates using etched a-GaN. The a-GaN layer was etched by pulse NH3 interrupted etching. Subsequently, a 2-µm-thick Si-doped a-GaN layer was regrown on the etched a-GaN layer. A fully coalescent n-type a-GaN layer with a low threading dislocation density (~7.5 × 108 cm−2) and a low basal stacking fault density (~1.8 × 105 cm−1) was obtained. Compared with a planar sample, the full width at half maximum of the (11-20) X-ray rocking curve was significantly decreased to 518 arcsec along the c-axis direction and 562 arcsec along the m-axis direction.

© 2014 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Materials

History
Original Manuscript: December 16, 2013
Revised Manuscript: January 25, 2014
Manuscript Accepted: February 3, 2014
Published: February 6, 2014

Citation
Ji-Su Son, Yoshio Honda, and Hiroshi Amano, "Growth of low-defect-density nonpolar a-plane GaN on r-plane sapphire using pulse NH3 interrupted etching," Opt. Express 22, 3585-3592 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3585


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett.48(5), 353–355 (1986). [CrossRef]
  2. S. Nakamura, S. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. Part 234(7A), L797–L799 (1995). [CrossRef]
  3. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature406(6798), 865–868 (2000). [CrossRef] [PubMed]
  4. P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allegre, B. Gil, H. Mathieu, B. Damilano, N. Grandjean, and J. Massies, “High internal electric field in a graded-width InGaN/GaN quantum well: accurate determination by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.78(9), 1252–1254 (2001). [CrossRef]
  5. T. Paskova, R. Kroeger, S. Figge, D. Hommel, V. Darakchieva, B. Monemar, E. Preble, A. Hanser, N. M. Williams, and M. Tutor, “High-quality bulk a-plane GaN sliced from boules in comparison to heteroepitaxially grown thick films on r-plane sapphire,” Appl. Phys. Lett.89(5), 051914 (2006). [CrossRef]
  6. X. Ni, Ü. Özgür, H. Morkoç, Z. Liliental-Weber, and H. O. Everitt, “Epitaxial lateral overgrowth of a-plane GaN by metalorganic chemical vapor deposition,” J. Appl. Phys.102(5), 053506 (2007). [CrossRef]
  7. T. Iwahashi, Y. Kitaoka, F. Kawamura, M. Yoshimura, Y. Mori, T. Sasaki, R. Armitage, and H. Hirayama, “Liquid phase epitaxy growth of m-plane GaN substrate using the Na flux method,” Jpn. J. Appl. Phys.46(10), L227–L229 (2007). [CrossRef]
  8. D. Hanser, L. Liu, E. A. Preble, K. Udwary, T. Paskova, and K. R. Evans, “Fabrication and characterization of native non-polar GaN substrates,” J. Cryst. Growth310(17), 3953–3956 (2008). [CrossRef]
  9. H. Yamada, Y. Iso, M. Saito, H. Hirasawa, N. Fellows, H. Masui, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Comparison of InGaN/GaN light emitting diodes grown on m-plnae and a-plane bulk GaN substrates,” Phys. Status Solidi2, 89–91 (2008).
  10. C. Chen, J. Yang, H. Wang, J. Zhang, V. Adivarahan, M. Gaevski, E. Kuokstis, Z. Gong, M. Su, and M. A. Khan, “Lateral epitaxial overgrowth of fully coalesced a-plane GaN on r-plane sapphire,” Jpn. J. Appl. Phys. Part 242(6B), L640–L642 (2003). [CrossRef]
  11. S. M. Hwang, H. Y. Song, Y. G. Seo, J. S. Son, J. H. Kim, and K. H. Baik, “Enhanced electroluminescence of a-plane InGaN light emitting diodes grown on oxide-patterned r-plane sapphire substrates,” Opt. Express19(23), 23036–23041 (2011). [CrossRef] [PubMed]
  12. J. S. Son, Y. Honda, M. Yamaguchi, H. Amano, K. H. Baik, Y. G. Seo, and S. M. Hwang, “Characteristics of a-plane GaN films grown on optimized silicon-dioxide-patterned r-plane sapphire substrates,” Thin Solid Films546, 108–113 (2013). [CrossRef]
  13. J. L. Hollander, M. J. Kappers, C. McAleese, and C. J. Humphreys, “Improvements in a-plane GaN crystal quality by a two-step growth process,” Appl. Phys. Lett.92(10), 101104 (2008). [CrossRef]
  14. J. S. Son, C. Miao, Y. Honda, M. Yamaguchi, H. Amano, Y. G. Seo, S. M. Hwang, and K. H. Baik, “Effects of nano- and microscale SiO2 masks on the growth of a-plane GaN layers on r-plane sapphire,” Jpn. J. Appl. Phys.52(8S), 08JC04 (2013). [CrossRef]
  15. Z. A. Munir and A. W. Searcy, “Activation energy for the sublimation of gallium nitride,” J. Chem. Phys.42(12), 4223–4228 (1965). [CrossRef]
  16. D. D. Koleske, A. E. Wickenden, R. L. Henry, J. C. Culbertson, and M. E. Twigg, “GaN decomposition in H2 and N2 at MOVPE temperatures and pressures,” J. Cryst. Growth223(4), 466–483 (2001). [CrossRef]
  17. M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, “Structural characterization of nonpolar (11-20) a-plane GaN thin films grown on (1-102) r-plane sapphire,” Appl. Phys. Lett.81(3), 469–471 (2002). [CrossRef]
  18. M. A. Moram, C. F. Johnston, J. L. Hollander, M. J. Kappers, and C. J. Humphreys, “Understanding x-ray diffraction of nonpolar gallium nitride films,” J. Appl. Phys.105(11), 113501 (2009). [CrossRef]
  19. S. Nitta, M. Kariya, T. Kashima, S. Yamaguchi, H. Amano, and I. Akasaki, “Mass transport and reduction of threading dislocation in GaN,” Appl. Surf. Sci.159–160, 421–426 (2000). [CrossRef]
  20. P. Vennéguès, B. Beaumont, V. Bousquet, M. Vaille, and P. Gibart, “Reduction mechanisms for defect densities in GaN using one- or two-step epitaxial lateral overgrowth methods,” J. Appl. Phys.87(9), 4175–4181 (2000). [CrossRef]
  21. J. K. Sheu, S. J. Tu, M. L. Lee, Y. H. Yeh, C. C. Yang, F. W. Huang, W. C. Lai, C. W. Chen, and G. C. Chi, “Enhanced light output of GaN-based light-emitting diodes with embedded voids formed on Si-implanted GaN layers,” IEEE Electron Device Lett.32(10), 1400–1402 (2011). [CrossRef]
  22. D. N. Zakharov, Z. Liliental-Weber, B. Wagner, Z. J. Reitmeier, E. A. Preble, and R. F. Davis, “Structural TEM study of nonpolar a-plane gallium nitride grown on (11-20) 4H-SiC by organometallic vapor phase epitaxy,” Phys. Rev. B71(23), 235334 (2005). [CrossRef]
  23. H. Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang, and M. A. Khan, “Anisotropic structural characteristics of (11-20) GaN templates and coalesced epitaxial lateral overgrown films deposited on (10-12) sapphire,” Appl. Phys. Lett.84(4), 499–501 (2004). [CrossRef]
  24. K. Iso, H. Yamada, H. Hirasawa, N. Fellows, M. Saito, K. Fujito, S. P. Denbaars, J. S. Speck, and S. Nakamura, “High brightness blue InGaN/GaN light emitting diode on nonpolar m-plane bulk GaN substrate,” Jpn. J. Appl. Phys.46(40), L960–L962 (2007). [CrossRef]
  25. A. Chitnis, C. Chen, V. Adivarahan, M. Shatalov, E. Kuokstis, V. Mandavilli, J. Yang, and M. A. Khan, “Visible light-emitting diodes using a-plane GaN-InGaN multiple quantum wells over r-plane sapphire,” Appl. Phys. Lett.84(18), 3663 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited