OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3611–3620

Two-photon interference with continuous-wave multi-mode coherent light

Yong-Su Kim, Oliver Slattery, Paulina S. Kuo, and Xiao Tang  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3611-3620 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4549 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report two-photon interference with continuous-wave multi-mode coherent light. We show that the two-photon interference, in terms of the detection time difference, reveals two-photon beating fringes with the visibility V = 0.5. While scanning the optical delay of the interferometer, Hong-Ou-Mandel dips or peaks are measured depending on the chosen detection time difference. The HOM dips/peaks are repeated when the optical delay and the first-order coherence revival period of the multi-mode coherent light are the same. These results help to understand the nature of two-photon interference and also can be useful for quantum information science.

© 2014 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(270.1670) Quantum optics : Coherent optical effects
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Coherence and Statistical Optics

Original Manuscript: December 13, 2013
Manuscript Accepted: January 14, 2014
Published: February 6, 2014

Yong-Su Kim, Oliver Slattery, Paulina S. Kuo, and Xiao Tang, "Two-photon interference with continuous-wave multi-mode coherent light," Opt. Express 22, 3611-3620 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Young, Lectures on Natural Philosophy, Vol. I, p. 464 (Johnson, London, 1807).
  2. E. Hecht, Optics (Addision-Wesely, San Francisco, 2002).
  3. L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274–S282 (1999). [CrossRef]
  4. C.K. Hong, Z.Y. Ou, L. Mandel, “Measurement of sub picosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef] [PubMed]
  5. J.G. Rarity, P.R. Tapster, R. Loudon, “Non-classical interference between independent sources,” J. Opt. B: Quantum Semiclass. Opt. 7, S171–S175 (2005). [CrossRef]
  6. A.K. Jha, Coherence property of the entangled two-photon field produced by parametric down-conversion, Ph.D. thesis, University of Rochester, NY, 2009.
  7. Z.Y. Ou, L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54–57 (1988). [CrossRef] [PubMed]
  8. T. Legero, T. Wilk, A. Kuhn, G. Rempe, “Time-resolved two-photon quantum interference,” Appl. Phys. B 77, 797–802 (2003). [CrossRef]
  9. T. Legero, T. Wilk, M. Hennrich, G. Rempe, A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004). [CrossRef] [PubMed]
  10. T. Legero, T. Wilk, A. Kuhn, G. Rempe, “Characterization of single photons using two-photon interference,” Adv. Atom. Atom. Mol. Opt. Phys. 53, 253–289 (2006). [CrossRef]
  11. X.Y. Zou, L.J. Wang, L. Mandel, “Induced coherence and indistinguishability in optical interference,” Phys. Rev. Lett. 67, 318–321 (1991). [CrossRef] [PubMed]
  12. O. Kwon, Y.-S. Ra, Y.-H. Kim, “Observing photonic de Broglie waves without the maximally-path-entangled |N, 0〉+ |0, N〉 state,” Phys. Rev. A 81, 063801 (2010). [CrossRef]
  13. H.-T. Lim, Y.-S. Kim, Y.-S. Ra, J. Bae, Y.-H. Kim, “Experimental realization of an approximate partial transpose for photonic two-qubit systems,” Phys. Rev. Lett. 107, 160401 (2011). [CrossRef] [PubMed]
  14. Y.-S. Kim, J.-C. Lee, O. Kwon, Y.-H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nature Phys. 8, 117–120 (2012). [CrossRef]
  15. E. Knill, R. Laflamme, G.J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef] [PubMed]
  16. P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowiling, G.J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]
  17. K. Wang, D.-Z. Cao, “Subwavelength coincidence interference with classical thermal light,” Phys. Rev. A 70, 041801 (2004). [CrossRef]
  18. J. Cheng, S.-S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004). [CrossRef] [PubMed]
  19. J. Xiong, D.-Z. Cao, F. Huang, H.-G. Li, X.-J. Sun, K. Wang, “Experimental observation of classical sub wavelength interference with a pseudo thermal light source,” Phys. Rev. Lett. 94, 173601 (2005). [CrossRef]
  20. Y.H. Zhai, X.-H. Chen, D. Zhang, L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005). [CrossRef]
  21. Y.-S. Kim, O. Slattery, P.S. Kuo, X. Tang, “Conditions for two-photon interference with coherent pulses,” Phys. Rev. A 87, 063843 (2013). [CrossRef]
  22. L. de Broglie, J.A.E. Silva, “Interpretation of a Recent Experiment on Interference of Photon Beams,” Phys. Rev. 172, 1284–1285 (1968). [CrossRef]
  23. S.-Y. Baek, O. Kwon, Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46, 7720–7723 (2007). [CrossRef]
  24. O. Kwon, Y.-S. Ra, Y.-H. Kim, “Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser,” Opt. Express 17, 13059 (2009). [CrossRef] [PubMed]
  25. O. Kwon, K.-K. Park, Y.-S. Ra, Y.-S. Kim, Y.-H. Kim, “Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser,” Opt. Express 21, 25492 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited