OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3621–3628

Microwave field controlled slow and fast light with a coupled system consisting of a nanomechanical resonator and a Cooper-pair box

Peng-Cheng Ma, Yin Xiao, Ya-Fei Yu, and Zhi-Ming Zhang  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3621-3628 (2014)
http://dx.doi.org/10.1364/OE.22.003621


View Full Text Article

Enhanced HTML    Acrobat PDF (979 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically demonstrate an efficient method to control slow and fast light in microwave regime with a coupled system consisting of a nanomechanical resonator (NR) and a superconducting Cooper-pair box (CPB). Using the pump-probe technique, we find that both slow and fast light effects of the probe field can appear in this coupled system. Furthermore, we show that a tunable switch from slow light to fast light can be achieved by only adjusting the pump-CPB detuning from the NR frequency to zero. Our coupled system may have potential applications, for example, in optical communication, microwave photonics, and nonlinear optics.

© 2014 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(230.1150) Optical devices : All-optical devices
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Slow and Fast Light

History
Original Manuscript: December 30, 2013
Revised Manuscript: January 27, 2014
Manuscript Accepted: January 28, 2014
Published: February 6, 2014

Citation
Peng-Cheng Ma, Yin Xiao, Ya-Fei Yu, and Zhi-Ming Zhang, "Microwave field controlled slow and fast light with a coupled system consisting of a nanomechanical resonator and a Cooper-pair box," Opt. Express 22, 3621-3628 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3621


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009). [CrossRef] [PubMed]
  2. A. Kasapi, M. Jain, G. Y. Yin, S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995). [CrossRef] [PubMed]
  3. S. Chu, S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982). [CrossRef]
  4. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  5. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999). [CrossRef]
  6. D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999). [CrossRef]
  7. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001). [CrossRef]
  8. M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003). [CrossRef] [PubMed]
  9. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004). [CrossRef] [PubMed]
  10. M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003). [CrossRef] [PubMed]
  11. K. C. Schwab, M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005). [CrossRef]
  12. A. N. Cleland, M. L. Roukes, “Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals,” Appl. Phys. Lett. 69, 2653–2655 (1996). [CrossRef]
  13. J. J. Li, K. D. Zhu, “An efficient optical knob from slow light to fast in a coupled nanomechanical resonator-quantum dot system,” Opt. Express 17, 19874–19881 (2009). [CrossRef] [PubMed]
  14. Y. J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006). [CrossRef] [PubMed]
  15. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, M. L. Roukes, “Zeptogram-scalenanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006). [CrossRef] [PubMed]
  16. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010). [CrossRef]
  17. I. Wilson-Rae, P. Zoller, A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004). [CrossRef] [PubMed]
  18. D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13, 023003 (2011). [CrossRef]
  19. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011). [CrossRef] [PubMed]
  20. X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9, 179–184 (2013). [CrossRef]
  21. A. D. Armour, M. P. Blencow, K. C. Schwab, “Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box,” Phys. Rev. Lett. 88, 148301 (2002). [CrossRef] [PubMed]
  22. P. Zhang, Y. D. Wang, C. P. Sun, “Quantum measurement of a coupled nanomechanical resonator-Cooper-pair box system,” Phys. Rev. B 68, 155311 (2003). [CrossRef]
  23. P. Zhang, Y. D. Wang, C. P. Sun, “Cooling mechanism for a nanomechanical resonator by periodic coupling to a Cooper pair box,” Phys. Rev. Lett. 95, 097204 (2005). [CrossRef]
  24. M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, M. L. Roukes, “Nanomechanical measurements of a superconducting qubit,” Nature 459, 960–964 (2009). [CrossRef] [PubMed]
  25. J. Suh, M. D. LaHaye, P. M. Echternach, K. C. Schwab, M. L. Roukes, “Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator,” Nano Lett. 10, 3990–3994 (2010). [CrossRef] [PubMed]
  26. W. Xue, S. Sales, J. Capmany, J. Mork, “Microwave phase shifter with controllable power response based on slow-and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34, 929–931 (2009). [CrossRef] [PubMed]
  27. L. Wei, W. Xue, Y. Chen, T. T. Alkeskjold, A. Bjarklev, “Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device,” Opt. Lett. 34, 2757–2759 (2009). [CrossRef] [PubMed]
  28. Y. Nakamura, Y. A. Pashkin, J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, 786–788 (1999). [CrossRef]
  29. O. Astafiev, Y. A. Pashkin, Y. Nakamura, T. Yamamoto, J. S. Tsai, “Quantum noise in the Josephson charge qubit,” Phys. Rev. Lett. 93, 267007 (2004). [CrossRef]
  30. I. Chiorescu, Y. Nakamura, C. J. P. M. Harmansand, J. E. Mooij, “Coherent quantum dynamics of a super-conducting flux qubit, ” Science 299, 1869–1871 (2003). [CrossRef] [PubMed]
  31. C. P. Sun, L. F. Wei, Y. X. Liu, F. Nori, “Quantum transducers: Integrating transmission lines and nanomechanical resonators via charge qubits,” Phys. Rev. A 73, 022318 (2006). [CrossRef]
  32. X. Z. Yuan, H. S. Goan, C. H. Lin, K. D. Zhu, Y. W. Jiang, “Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system,” New J. Phys. 10, 095016 (2008). [CrossRef]
  33. G. S. Agarwal, “Electromagnetic-field-induced transparency in high-density exciton systems,” Phys. Rev. A 51, R2711–R2714 (1995). [CrossRef] [PubMed]
  34. G. S. Agarwal, S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010). [CrossRef]
  35. S. Huang, G. S. Agarwal, “Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011). [CrossRef]
  36. R. S. Bennink, R. W. Boyd, C. R. Stroud, V. Wong, “Enhanced self-action effects by electromagnetically induced transparency in the two-level atom,” Phys. Rev. A 63, 033804 (2001). [CrossRef]
  37. S. E. Harris, J. E. Field, A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992). [CrossRef] [PubMed]
  38. P. Rabl, A. Shnirman, P. Zoller, “Generation of squeezed states of nanomechanical resonators by reservoir engineering, ” Phys. Rev. B 70, 205304 (2004). [CrossRef]
  39. J. Clarke, F. K. Wilhelm, “Superconducting quantum bits,” Nature 453, 1031–1042 (2008). [CrossRef] [PubMed]
  40. M. Fleischhauer, A. Imamoglu, J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited