OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3629–3637

Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission

C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3629-3637 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3848 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate frequency comb sources based on silicon-organic hybrid (SOH) electro-optic modulators. Frequency combs with line spacings of 25 GHz and 40 GHz are generated, featuring flat-top spectra with less than 2 dB power variations over up to 7 lines. The combs are used for WDM data transmission at terabit/s data rates and distances of up to 300 km.

© 2014 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Waveguide and Optoelectronic Devices

Original Manuscript: November 7, 2013
Manuscript Accepted: January 15, 2014
Published: February 7, 2014

Virtual Issues
European Conference and Exhibition on Optical Communication (2013) Optics Express

C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, "Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission," Opt. Express 22, 3629-3637 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009). [CrossRef]
  2. S. T. Cundiff, A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010). [CrossRef]
  3. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “26 Tbit/s line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011). [CrossRef]
  4. Y.-K. Huang, E. Ip, Z. Wang, M.-F. Huang, Y. Shao, T. Wang, “Transmission of spectral efficient super-channels using all-optical OFDM and digital coherent receiver technologies,” J. Lightwave Technol. 29(24), 3838–3844 (2011). [CrossRef]
  5. T. Sakamoto, T. Kawanishi, M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007). [CrossRef] [PubMed]
  6. L. Gheorma, G. K. Gopalakrishnan, “Flat frequency comb generation with an integrated dual-parallel modulator,” IEEE Photonics Technol. Lett. 19(13), 1011–1013 (2007). [CrossRef]
  7. S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, P. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photonics Technol. Lett. 20(1), 36–38 (2008). [CrossRef]
  8. J. Veselka, S. Korotky, “A multiwavelength source having precise channel spacing for WDM systems,” IEEE Photonics Technol. Lett. 10(7), 958–960 (1998). [CrossRef]
  9. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010). [CrossRef] [PubMed]
  10. T. Healy, F. C. Garcia Gunning, A. D. Ellis, J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express 15(6), 2981–2986 (2007). [CrossRef] [PubMed]
  11. A. Metcalf, V. Torres-Company, D. Leaird, A. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3500306 (2013). [CrossRef]
  12. J. Zhang, J. Yu, Z. Dong, Y. Shao, N. Chi, “Generation of full C-band coherent and frequency-lock multi-carriers by using recirculating frequency shifter loops based on phase modulator with external injection,” Opt. Express 19(27), 26370–26381 (2011). [CrossRef] [PubMed]
  13. K.-P. Ho, J. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” IEEE Photonics Technol. Lett. 5(6), 721–725 (1993). [CrossRef]
  14. N. Dupuis, C. R. Doerr, L. Zhang, L. Chen, N. J. Sauer, P. Dong, L. L. Buhl, D. Ahn, “InP-based comb generator for optical OFDM,” J. Lightwave Technol. 30(4), 466–472 (2012). [CrossRef]
  15. T. Sakamoto, T. Kawanishi, M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039 (2007). [CrossRef]
  16. A. Biberman, K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012). [CrossRef] [PubMed]
  17. D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
  18. L. Liao, A. Liu, J. Basak, H. Nguyen, M. Paniccia, D. Rubin, Y. Chetrit, R. Cohen, N. Izhaky, “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett. 43(22), 1196 (2007). [CrossRef]
  19. M. Watts, W. Zortman, D. Trotter, R. Young, A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010). [CrossRef]
  20. W. M. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  21. T. W. Baehr-Jones, M. J. Hochberg, “Polymer silicon hybrid systems: A platform for practical nonlinear optics,” J. Phys. Chem. C 112(21), 8085–8090 (2008). [CrossRef]
  22. J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, M. Jenett, A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010). [CrossRef] [PubMed]
  23. J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16(6), 4177–4191 (2008). [CrossRef] [PubMed]
  24. R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 Mhz bandwidth,” J. Lightwave Technol. 29(8), 1112–1117 (2011). [CrossRef]
  25. M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15(13), 8401–8410 (2007). [CrossRef] [PubMed]
  26. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011). [CrossRef] [PubMed]
  27. C. Weimann, S. Wolf, D. Korn, R. Palmer, S. Koeber, R. Schmogrow, P. C. Schindler, L. Alloatti, A. Ludwig, W. Heni, D. Bekele, D. L. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb source for data transmission at 784 Gbit/s,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, 2013), paper Th.2.B.1. [CrossRef]
  28. R. Palmer, L. Alloatti, D. Korn, P. Schindler, M. Baier, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, J. Leuthold, “Low power Mach-Zehnder modulator in silicon-organic hybrid technology,” IEEE Photonics Technol. Lett. 25(13), 1226–1229 (2013). [CrossRef]
  29. V. R. Almeida, Q. Xu, C. A. Barrios, M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  30. R. Palmer, S. Koeber, W. Heni, D. Elder, D. Korn, H. Yu, L. Alloatti, S. Koenig, P. Schindler, W. Bogaerts, M. Pantouvaki, G. Lepege, O. Verheyen, J. Van Campenhout, P. Absil, R. Baets, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed silicon-organic hybrid (SOH) modulator with 1.6 fJ/bit and 180 pm/V in-device nonlinearity,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, 2013), paper We.3.B.3. [CrossRef]
  31. D. Taillaert, F. van Laere, M. Ayre, W. Bogaerts, D. van Thourhout, P. Bienstman, R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006). [CrossRef]
  32. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012). [CrossRef] [PubMed]
  33. R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, J. Leuthold, “Real-time Software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photonics Technol. Lett. 22(21), 1601–1603 (2010). [CrossRef]
  34. F. Chang, K. Onohara, T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010). [CrossRef]
  35. ITU, “Spectral grids for WDM applications: DWDM frequency grid,” (ITU-T Recommendation G.694.1), International Telecommunications Union, February 2012, http://www.itu.int/rec/T-REC-G.694.1/ .
  36. D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. C. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012). [CrossRef]
  37. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012). [CrossRef]
  38. J. Luo, S. Huang, Z. Shi, B. M. Polishak, X.-H. Zhou, A. K. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011). [CrossRef]
  39. Z. Shi, W. Liang, J. Luo, S. Huang, B. M. Polishak, X. Li, T. R. Younkin, B. A. Block, A. K.-Y. Jen, “Tuning the kinetics and energetics of Diels−Alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers,” Chem. Mater. 22(19), 5601–5608 (2010). [CrossRef]
  40. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007). [CrossRef]
  41. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited