OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3648–3660

Polarization converters in highly birefringent microfibers

HaiFeng Xuan, Jun Ma, Wa Jin, and Wei Jin  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3648-3660 (2014)
http://dx.doi.org/10.1364/OE.22.003648


View Full Text Article

Enhanced HTML    Acrobat PDF (2590 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel type of polarization converters (PCs) based on highly birefringent (Hi-Bi) microfibers is presented. Analytical formulation based on the Jones Matrix method and a numerical code based on the Full Vectorial Finite Difference Beam Propagation Method are developed to analyze the polarization evolutions in such PCs. Two different design configurations, namely the “one-side” and “two-side” perturbation configurations, are studied by use of the two methods, and the results obtained agree well with each others. The PCs can be flexibly designed to have different operating wavelengths, spectral bandwidths, and devices lengths. A particular PC based on an elliptical microfiber demonstrates a bandwidth of ∼ 600 nm around 1550 nm with a device length of ∼ 150 μm.

© 2013 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(230.5440) Optical devices : Polarization-selective devices
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics

History
Original Manuscript: August 5, 2013
Revised Manuscript: November 29, 2013
Manuscript Accepted: November 30, 2013
Published: February 7, 2014

Citation
HaiFeng Xuan, Jun Ma, Wa Jin, and Wei Jin, "Polarization converters in highly birefringent microfibers," Opt. Express 22, 3648-3660 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3648


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef] [PubMed]
  2. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, Liu, E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005). [CrossRef] [PubMed]
  3. G. Brambilla, V. Finazzi, D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258–2263 (2004). [CrossRef] [PubMed]
  4. M. Sumetsky, “Basic elements for microfiber photonics: micro/nanofibers and microfiber coil resonators,” J. Lightwave Technol. 26, 21–27 (2008). [CrossRef]
  5. H. F. Xuan, W. Jin, M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17, 21882–21890 (2009). [CrossRef] [PubMed]
  6. H. F. Xuan, W. Jin, S. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett. 35, 85–87 (2010). [CrossRef] [PubMed]
  7. X. Fang, C. R. Liao, D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35, 1007–1009 (2010). [CrossRef] [PubMed]
  8. J. L. Kou, S. J. Qiu, F. Xu, Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order bragg grating in a tapered fiber probe,” Opt. Express 19, 18452–18457 (2011). [CrossRef] [PubMed]
  9. H. F. Xuan, J. Ju, W. Jin, “Highly birefringent optical microfibers,” Opt. Express 18, 3828–3839 (2010). [CrossRef] [PubMed]
  10. J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986). [CrossRef]
  11. R. Bergh, H. Lefevre, H. J. Shaw, “An overview of fiber-optic gyroscopes,” J. Lightwave Technol. 2, 91–107 (1984). [CrossRef]
  12. Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59, 1278–1280 (1991). [CrossRef]
  13. G. Statkiewicz-Barabach, A. Anuszkiewicz, W. Urbanczyk, J. Wojcik, “Sensing characteristics of rocking filter fabricated in microstructured birefringent fiber using fusion arc splicer,” Opt. Express 16, 17258–17268 (2008). [PubMed]
  14. T. Mangeat, L. Escoubas, F. Flory, L. Roussel, M. De Micheli, P. Coudray, “Integrated polarization rotator made of periodic asymmetric buried Ta2O5 / silica sol-gel waveguides,” Opt. Express 15, 12436–12442 (2007). [CrossRef] [PubMed]
  15. K. Bayat, S. K. Chaudhuri, S. Safavi-Naeini, “Ultra-compact photonic crystal based polarization rotator,” Opt. Express 17, 7145–7158 (2009). [CrossRef] [PubMed]
  16. R. H. Stolen, A. Ashkin, W. Pleibel, J. M. Dziedzic, “In-line fiber-polarization-rocking rotator and filter,” Opt. Lett. 9, 300–302 (1984). [CrossRef] [PubMed]
  17. R. Kaul, “Pressure sensitivity of rocking filters fabricated in an elliptical-core optical fiber,” Opt. Lett. 20, 1000 (1995). [CrossRef] [PubMed]
  18. G. Kakarantzas, A. Ortigosa-Blanch, T. a. Birks, P. S. J. Russell, L. Farr, F. Couny, B. J. Mangan, “Structural rocking filters in highly birefringent photonic crystal fiber,” Opt. Lett. 28, 158–160 (2003). [CrossRef] [PubMed]
  19. W. P. Huang, M. Z. Mao, “Polarization rotation in periodic loaded rib waveguides,” J. Lightwave Technol. 10, 1825–1831 (1992). [CrossRef]
  20. S. Obayya, B. Rahman, H. El-Mikati, “Vector beam propagation analysis of polarization conversion in periodically loaded waveguides,” IEEE Photonics Technol. Lett. 12, 1346–1348 (2000). [CrossRef]
  21. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000). [CrossRef]
  22. J. Broeng, S. E. Barkou, T. Søndergaard, A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25, 96–98 (2000). [CrossRef]
  23. W. P. Huang, C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” J. Lightwave Technol. 29, 2639–2649 (1993).
  24. J. Yamauchi, G. Takahashi, H. Nakano, “Full-vectorial beam-propagation method based on the McKee-Mitchell scheme with improved finite-difference formulas,” J. Lightwave Technol. 16, 2458–2464 (1998). [CrossRef]
  25. F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, S. Trillo, “Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers,” Opt. Express 10, 54–59 (2002). [CrossRef] [PubMed]
  26. G. R. Hadley, “Transparent boundary condition for beam propagation,” Opt. Lett. 16, 624–626 (1991). [CrossRef] [PubMed]
  27. J. Shibayama, M. Sekiguchi, J. Yamauchi, H. Nakano, “Eigenmode analysis of optical waveguides by an improved finite-difference imaginary-distance beam propagation method,” Electron. Comm. Jpn. 2 81, 1–9 (1998).
  28. I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photonics Technol. Lett. 21, 1894–1896 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited