OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3724–3731

Fabricating centimeter-scale high quality factor two-dimensional periodic photonic crystal slabs

Jeongwon Lee, Bo Zhen, Song-Liang Chua, Ofer Shapira, and Marin Soljačić  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3724-3731 (2014)
http://dx.doi.org/10.1364/OE.22.003724


View Full Text Article

Enhanced HTML    Acrobat PDF (6379 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a fabrication route for centimeter-scale two-dimensional defect-free photonic crystal slabs with quality factors bigger than 10,000 in the visible, together with a unique way to quantify their quality factors. We fabricate Si3N4 photonic crystal slabs, and perform an angle-resolved reflection measurement. This measurement data is used to retrieve the quality factors of the slabs by fitting it to a model based on temporal coupled-mode theory. The macroscopic nature of the structure and the high quality factors of their resonances could open up new opportunities for realizing efficient macroscale optoelectronic devices such as sensors, lasers, and energy harvesting systems.

© 2014 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Photonic Crystals

History
Original Manuscript: December 18, 2013
Revised Manuscript: January 29, 2014
Manuscript Accepted: January 29, 2014
Published: February 7, 2014

Citation
Jeongwon Lee, Bo Zhen, Song-Liang Chua, Ofer Shapira, and Marin Soljačić, "Fabricating centimeter-scale high quality factor two-dimensional periodic photonic crystal slabs," Opt. Express 22, 3724-3731 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3724


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef] [PubMed]
  2. T. Benson, S. Boriskina, P. Sewell, A. Vukovic, S. Greedy, A. Nosich, Micro-optical Resonators for Micro-lasers and Integrated Optoelectronics, Vol. 216 of Frontiers in Planar Lightwave Circuit Technology (Springer, 2006), pp. 39–70.
  3. D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef] [PubMed]
  4. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator,” Nat. Photon. 4, 46–49 (2010). [CrossRef]
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]
  6. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14, 6308–6315 (2006). [CrossRef] [PubMed]
  7. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. V. d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002). [CrossRef]
  8. H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002). [CrossRef]
  9. S. Kim, S. Ahn, J. Lee, H. Jeon, P. Regreny, C. Seassal, E. Augendre, L. D. Cioccio, “Milliwatt-level fiber-coupled laser power from photonic crystal band-edge laser,” Opt.Express 19, 2105–2110 (2011).
  10. B.-S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005). [CrossRef]
  11. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, S. Noda, “Design and demonstration of high-q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17, 18093–18102 (2009). [CrossRef] [PubMed]
  12. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007). [CrossRef] [PubMed]
  13. T. Barwicz, M. Popović, P. Rakich, M. Watts, H. Haus, E. Ippen, H. Smith, “Microring-resonator-based add-drop filters in sin: fabrication and analysis,” Opt. Express 12, 1437–1442 (2004). [CrossRef] [PubMed]
  14. T. Barwicz, M. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” J. Lightwave Technol. 24, 2207–2218 (2006). [CrossRef]
  15. J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012). [CrossRef] [PubMed]
  16. C. P. Fucetola, H. Korre, K. K. Berggren, “Low-cost interference lithography,” J. Vac. Sci. Technol. B 27, 2958–2961 (2009). [CrossRef]
  17. Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449, 261–264 (2008). [CrossRef]
  18. H. I. Smith, “Low cost nanolithography with nanoaccuracy,” Physica E 11, 104–109 (2001). [CrossRef]
  19. J. Hu, N.-N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18, 1469–1478 (2010). [CrossRef] [PubMed]
  20. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  21. A. Buxbaum, M. W. Montgomery, U.S. Patent No. 6,582,861 B2 (24 Jun. 2003).
  22. S.-L. Chua, Y. Chong, A. D. Stone, M. Soljacic, J. Bravo-Abad, “Low-threshold lasing action in photonic crystal slabs enabled by fano resonances,” Opt. Express 19, 1539–1562 (2011). [CrossRef] [PubMed]
  23. L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, P. Viktorovitch, “Slow bloch mode confinement in 2d photonic crystals for surface operating devices,” Opt. Express 16, 3136–3145 (2008). [CrossRef] [PubMed]
  24. M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. D. Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, 113111 (2002). [CrossRef]
  25. A. R. Alija, L. J. Martínez, P. A. Postigo, J. Sánchez-Dehesa, M. Galli, A. Politi, M. Patrini, L. C. Andreani, C. Seassal, P. Viktorovitch, “Theoretical and experimental study of the suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy,” Opt. Express 15, 704–713 (2007). [CrossRef] [PubMed]
  26. M. Gehl, R. Gibson, J. Hendrickson, A. Homyk, A. Saynatjoki, T. Alasaarela, L. Karvonen, A. Tervonen, S. Honkanen, S. Zandbergen, B. C. Richards, J. D. Olitzky, A. Scherer, G. Khitrova, H. M. Gibbs, J.-Y. Kim, Y.-H. Lee, “Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities,” J. Opt. Soc. Am. B 29, A55–A59 (2012). [CrossRef]
  27. E. Jaquay, L. J. Martínez, C. A. Mejia, M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett. 13, 2290–2294 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited