OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3732–3739

Soliton families and resonant radiation in a micro-ring resonator near zero group-velocity dispersion

C. Milián and D.V. Skryabin  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 3732-3739 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (17062 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report theoretical and numerical study of the dynamical and spectral properties of the conservative and dissipative solitons in micro-ring resonators pumped in a proximity of the zero of the group velocity dispersion. We discuss frequency and velocity locking of the conservative solitons, when dissipation is accounted for. We present theory of the dispersive radiation emitted by such solitons, report their Hopf instability and radiation enhancement by multiple solitons.

© 2014 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Nonlinear Optics

Original Manuscript: December 18, 2013
Revised Manuscript: January 27, 2014
Manuscript Accepted: January 29, 2014
Published: February 7, 2014

C. Milián and D.V. Skryabin, "Soliton families and resonant radiation in a micro-ring resonator near zero group-velocity dispersion," Opt. Express 22, 3732-3739 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator based optical frequency combs,” Science 332, 555–559 (2011). [CrossRef] [PubMed]
  2. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011). [CrossRef]
  3. Y. K. Chembo, N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010). [CrossRef]
  4. Y. K. Chembo, C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013). [CrossRef]
  5. A. B. Matsko, A. A. Savachenkov, W. Liang, V. S. Ilchenko, D. Seidel, L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36, 2845–2847 (2011). [CrossRef] [PubMed]
  6. A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photonics J. 5, 6100409 (2013). [CrossRef]
  7. S. Coen, H. G. Randle, T. Sylvestre, M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field LugiatoLefever model,” Opt. Lett. 38, 37–39 (2013). [CrossRef] [PubMed]
  8. M. R. E. Lamont, Y. Okawachi, A. L. Gaeta, “Route to stabilized ultrabroadband microresonator-based frequency combs,” Opt. Lett. 38, 3478–3481 (2013). [CrossRef] [PubMed]
  9. L. Zhang, C. Bao, V. Singh, J. Mu, C. Yang, A.M. Agarwal, L.C. Kimerling, J. Michel, “Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator,” Opt. Lett. 38, 5122–5125 (2013). [CrossRef] [PubMed]
  10. D. V. Skryabin, A. V. Gorbach, “Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010). [CrossRef]
  11. V. I. Karpman, “Stationary and radiating dark solitons of the third order nonlinear Schrodinger equation,” Phys. Lett. A 181, 211–215 (1993). [CrossRef]
  12. V. V. Afanasjev, Y. S. Kivshar, C. R. Menyuk, “Effect of third-order dispersion on dark solitons,” Opt. Lett. 21, 1975–1977 (1996). [CrossRef] [PubMed]
  13. C. Milián, D. V. Skryabin, A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34, 2096–2098 (2009). [CrossRef] [PubMed]
  14. M. Tlidi, L. Gelens, “High-order dispersion stabilizes dark dissipative solitons in all-fiber cavities,” Opt. Lett. 35, 306–309 (2010). [CrossRef] [PubMed]
  15. M. Tlidi, L. Bahloul, L. Cherbi, A. Hariz, S. Coulibaly, “Drift of dark cavity solitons in a photonic-crystal fiber resonator,” Phys. Rev. A 88, 035802 (2013). [CrossRef]
  16. F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nature Photon. 4, 471–476 (2010). [CrossRef]
  17. F. Leo, A. Mussot, P. Kockaert, P. Emplit, M. Haelterman, M. Taki, “Nonlinear symmetry breaking induced by third order dispersion in optical fiber cavities,” Phys. Rev. Lett. 110, 104103 (2013). [CrossRef]
  18. I. V. Barashenkov, E. V. Zemlyanaya, “Travelling solitons in the externally driven nonlinear Schrdinger equation,” J. Phys. A: Math. Theor. 44, 1–23 (2011). [CrossRef]
  19. I. V. Barashenkov, Yu. S. Smirnov, “Existence and stability chart for the ac-driven, damped nonlinear Schrdinger solitons,” Phys. Rev. E 54, 5707–5725 (1996). [CrossRef]
  20. A. B. Matsko, A. A. Savchenkov, L. Maleki, “On excitation of breather solitons in an optical microresonator,” Opt. Lett. 37, 4856–4858 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited