OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 3740–3746

Soliton self-frequency shift and third-harmonic generation in a four-hole As2S5 microstructured optical fiber

Tonglei Cheng, Ryo Usaki, Zhongchao Duan, Weiqing Gao, Dinghuan Deng, Meisong Liao, Yasuhire Kanou, Morio Matsumoto, Takashi Misumi, Takenobu Suzuki, and Yasutake Ohishi  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 3740-3746 (2014)
http://dx.doi.org/10.1364/OE.22.003740


View Full Text Article

Enhanced HTML    Acrobat PDF (1203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Soliton self-frequency shift (SSFS) and third-harmonic generation (THG) are observed in a four-hole As2S5 chalcogenide microstructured optical fiber (MOF). The As2S5 MOF is tapered to offer an ideal environment for SSFS. After tapering, the zero-dispersion wavelength (ZDW) shifts from 2.02 to 1.61 μm, and the rate of SSFS can be enhanced by increasing the energy density of the pulse. By varying the average input power from 220 to 340 mW, SSFS of a soliton central wavelength from 2.206 to 2.600 μm in the mid-infrared is observed in the tapered segment, and THG at 632 nm is observed in the untapered segment.

© 2014 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Fiber Optics

History
Original Manuscript: December 2, 2013
Revised Manuscript: January 2, 2014
Manuscript Accepted: January 20, 2014
Published: February 10, 2014

Citation
Tonglei Cheng, Ryo Usaki, Zhongchao Duan, Weiqing Gao, Dinghuan Deng, Meisong Liao, Yasuhire Kanou, Morio Matsumoto, Takashi Misumi, Takenobu Suzuki, and Yasutake Ohishi, "Soliton self-frequency shift and third-harmonic generation in a four-hole As2S5 microstructured optical fiber," Opt. Express 22, 3740-3746 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-3740


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett.11(10), 662–664 (1986). [CrossRef] [PubMed]
  2. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers,” Science301(5640), 1705–1708 (2003). [CrossRef] [PubMed]
  3. J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton Self-Frequency Shift: Experimental Demonstrations and Applications,” IEEE J. Sel. Top. Quantum Electron.14(3), 713–723 (2008). [CrossRef] [PubMed]
  4. L. Liu, X. Meng, F. Yin, M. Liao, D. Zhao, G. Qin, Y. Ohishi, and W. Qin, “Soliton self-frequency shift controlled by a weak seed laser in tellurite photonic crystal fibers,” Opt. Lett.38(15), 2851–2854 (2013). [CrossRef] [PubMed]
  5. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett.11(10), 659–661 (1986). [CrossRef] [PubMed]
  6. J. K. Lucek and K. J. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A45(9), 6666–6674 (1992). [CrossRef] [PubMed]
  7. M. E. Masip, A. A. Rieznik, P. G. König, D. F. Grosz, A. V. Bragas, and O. E. Martinez, “Femtosecond soliton source with fast and broad spectral tunability,” Opt. Lett.34(6), 842–844 (2009). [CrossRef] [PubMed]
  8. B. Barviau, O. Vanvincq, A. Mussot, Y. Quiquempois, G. Mélin, and A. Kudlinski, “Enhanced soliton self-frequency shift and CW supercontinuum generation in GeO2-doped core photonic crystal fibers,” J. Opt. Soc. Am. B28(5), 1152–1160 (2011). [CrossRef]
  9. H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm,” Electron. Lett.40(24), 1523–1525 (2004). [CrossRef]
  10. A. M. Al-kadry and M. Rochette, “Mid-infrared sources based on the soliton self-frequency shift,” J. Opt. Soc. Am. B29(6), 1347–1355 (2012). [CrossRef]
  11. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett.26(6), 358–360 (2001). [CrossRef] [PubMed]
  12. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B26(11), 2064–2071 (2009). [CrossRef]
  13. I. G. Cormack, D. T. Reid, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, “Observation of soliton self-frequency shift in photonic crystal fiber,” Electron. Lett.38(4), 167–169 (2002). [CrossRef]
  14. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003). [CrossRef] [PubMed]
  15. J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber,” Opt. Lett.32(4), 340–342 (2007). [CrossRef] [PubMed]
  16. X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response effects on the soliton self-frequency shift in tellurite microstructured optical fiber,” J. Opt. Soc. Am. B28(8), 1831–1836 (2011). [CrossRef]
  17. J. Fatome, B. Kibler, M. Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in a chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett.47(6), 398–400 (2011). [CrossRef]
  18. J. M. Gabriagues, “Third-harmonic and three-wave sum-frequency light generation in an elliptical-core optical fiber,” Opt. Lett.8(3), 183–185 (1983). [CrossRef] [PubMed]
  19. T. Lee, Y. Jung, C. A. Codemard, M. Ding, N. G. R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibres,” Opt. Express20(8), 8503–8511 (2012). [CrossRef] [PubMed]
  20. A. Lin, A. Ryasnyanskiy, and J. Toulouse, “Tunable third-harmonic generation in a solid-core tellurite glass fiber,” Opt. Lett.36(17), 3437–3439 (2011). [CrossRef] [PubMed]
  21. Y. Tamaki, K. Midorikawa, and M. Obara, “Phase-matched third-harmonic generation by nonlinear phase shift in a hollow fiber,” Appl. Phys. B67(1), 59–63 (1998). [CrossRef]
  22. G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett.35(1), 58–60 (2010). [CrossRef] [PubMed]
  23. T. Kohoutek, S. Mizuno, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Third-harmonic generation measurement of nonlinear optical susceptibility χ (3) of Ge-Ga-Sb-S chalcogenide glasses proposed for highly nonlinear photonic fibers,” J. Opt. Soc. Am. B28(2), 298–305 (2011). [CrossRef]
  24. T. L. Cheng, Z. C. Duan, M. S. Liao, W. Q. Gao, D. H. Deng, T. Suzuki, and Y. Ohishi, “A simple all-solid tellurite microstructured optical fiber,” Opt. Express21(3), 3318–3323 (2013). [CrossRef] [PubMed]
  25. A. C. Judge, S. A. Dekker, R. Pant, C. M. de Sterke, and B. J. Eggleton, “Soliton self-frequency shift performance in As2S3 waveguides,” Opt. Express18(14), 14960–14968 (2010). [CrossRef] [PubMed]
  26. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010). [CrossRef] [PubMed]
  27. A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express11(20), 2567–2576 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited