OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 3777–3786

Polarization rotator-splitters in standard active silicon photonics platforms

Wesley D. Sacher, Tymon Barwicz, Benjamin J. F. Taylor, and Joyce K. S. Poon  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 3777-3786 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3315 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate various silicon-on-insulator polarization management structures based on a polarization rotator-splitter that uses a bi-level taper TM0-TE1 mode converter. The designs are fully compatible with standard active silicon photonics platforms with no new levels required and were implemented in the IME baseline and IME-OpSIS silicon photonics processes. We demonstrate a polarization rotator-splitter with polarization crosstalk < −13 dB over a bandwidth of 50 nm. Then, we improve the crosstalk to < −22 dB over a bandwidth of 80 nm by integrating the polarization rotator-splitter with directional coupler polarization filters. Finally, we demonstrate a polarization controller by integrating the polarization rotator-splitters with directional couplers, thermal tuners, and PIN diode phase shifters.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Integrated Optics

Original Manuscript: December 3, 2013
Revised Manuscript: January 19, 2014
Manuscript Accepted: January 20, 2014
Published: February 10, 2014

Wesley D. Sacher, Tymon Barwicz, Benjamin J. F. Taylor, and Joyce K. S. Poon, "Polarization rotator-splitters in standard active silicon photonics platforms," Opt. Express 22, 3777-3786 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Editorial, “Simply silicon,” Nat. Photonics 4, 491 (2010). [CrossRef]
  2. T. Baehr-Jones, L. Pinguet, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6, 206–208 (2012). [CrossRef]
  3. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007). [CrossRef]
  4. M. R. Watts, H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30, 139–140 (2005).
  5. M. R. Watts, H. A. Haus, E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005). [CrossRef] [PubMed]
  6. L. Chen, C. R. Doerr, Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36, 469–471 (2011). [CrossRef] [PubMed]
  7. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008). [CrossRef] [PubMed]
  8. D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–484 (2012). [CrossRef]
  9. L. Liu, Y. Ding, K. Yvind, J. M. Hvam, “Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36, 1059–1061 (2011). [CrossRef] [PubMed]
  10. D. Dai, J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011). [CrossRef] [PubMed]
  11. Y. Ding, H. Ou, C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38, 1227–1229 (2013). [CrossRef] [PubMed]
  12. T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, D.-L. Kwong, “Silicon modulators and germanium photodetectors on soi: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010). [CrossRef]
  13. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012). [CrossRef] [PubMed]
  14. www.opsisfoundry.org .
  15. W. Yuan, K. Kojima, B. Wang, T. Koike-Akino, K. Parsons, S. Nishikawa, E. Yagyu, “Mode-evolution-based polarization rotator-splitter design via simple fabrication process,” Opt. Express 20, 10163–10169 (2012). [CrossRef] [PubMed]
  16. D. Dai, Y. Yang, J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20, 13425–13439 (2012). [CrossRef] [PubMed]
  17. W. Sacher, T. Barwicz, J. K. Poon, “Silicon-on-insulator polarization splitter-rotator based on TM0-TE1 mode conversion in a bi-level taper,” in “Conference on Lasers and Electro-Optics, OSA Technical Digest,” (2013), p. CTu3F.3.
  18. N. Walker, G. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990). [CrossRef]
  19. T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata, K. Okamoto, “Planar lightwave circuit polarization-mode dispersion compensator,” IEEE Photon. Technol. Lett. 14, 507–509 (2002). [CrossRef]
  20. C. Doerr, L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” in “Optical Communication (ECOC), 2010 36th European Conference and Exhibition on,” (2010), pp. 1–3.
  21. C. Doerr, N. Fontaine, L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett. 24, 697–699 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited