OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 3824–3844

Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation

Raluca A. Negres, David A. Cross, Zhi M. Liao, Manyalibo J. Matthews, and Christopher W. Carr  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 3824-3844 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2747 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a comprehensive statistical model which includes both the probability of growth and growth rate to describe the evolution of exit surface damage sites on fused silica optics over multiple laser shots spanning a wide range of fluences. We focus primarily on the parameterization of growth rate distributions versus site size and laser fluence using Weibull statistics and show how this model is consistent with established fracture mechanics concepts describing brittle materials. Key growth behaviors and prediction errors associated with the present model are also discussed.

© 2014 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.4670) Materials : Optical materials
(160.6030) Materials : Silica
(240.6700) Optics at surfaces : Surfaces
(260.2160) Physical optics : Energy transfer

ToC Category:

Original Manuscript: November 28, 2013
Revised Manuscript: January 27, 2014
Manuscript Accepted: January 28, 2014
Published: February 11, 2014

Raluca A. Negres, David A. Cross, Zhi M. Liao, Manyalibo J. Matthews, and Christopher W. Carr, "Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation," Opt. Express 22, 3824-3844 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Bercegol, A. Boscheron, J. M. Di-Nicola, E. Journot, L. Lamaignerè, J. Néauport, G. Razé, “Laser damage phenomena relevant to the design and operation of an ICF laser driver,” J. Phys. Conf. Ser. 112, 032013 (2008). [CrossRef]
  2. A. Conder, J. Chang, L. Kegelmeyer, M. Spaeth, P. Whitman, “Final optics damage inspection (FODI) for the National Ignition Facility,” Proc. SPIE 7797, 77970P (2010). [CrossRef]
  3. I. L. Bass, G. M. Guss, M. J. Nostrand, P. J. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused silica using a rastered pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010). [CrossRef]
  4. J. Heebner, P. Wegner, C. Haynam, “Programmable beam spatial shaping for the National Ignition Facility,” SPIE Newsroom (July 21, 2010). doi:. [CrossRef]
  5. R. Beeler, A. Casey, A. Conder, R. Fallejo, M. Flegel, M. Hutton, K. Jancaitis, V. Lakamsani, D. Potter, S. Reisdorf, J. Tappero, P. Whitman, W. Carr, Z. Liao, “Shot planning and analysis tools on the NIF project,” Fusion Eng. Des. 87, 2020–2023 (2012). [CrossRef]
  6. L. M. Kegelmeyer, R. Clark, R. R. Leach, D. McGuigan, V. M. Kamm, D. Potter, J. T. Salmon, J. Senecal, A. Conder, M. Nostrand, P. K. Whitman, “Automated optics inspection analysis for NIF,” Fusion Eng. Des. 87, 2120–2124 (2012). [CrossRef]
  7. J. O. Porteus, S. C. Seitel, “Absolute onset of optical surface damage using distributed defect ensembles,” Appl. Opt. 23, 3796–3805 (1984). [CrossRef] [PubMed]
  8. F. Rainer, F. P. De Marco, M. C. Staggs, M. R. Kozlowski, L. J. Atherton, L. M. Sheehan, “Historical perspective on fifteen years of laser damage thresholds at LLNL,” Proc. SPIE 2114, 9–24 (1994). [CrossRef]
  9. M. J. Runkel, R. Sharp, “Modeling KDP bulk damage curves for prediction of large-area damage performance,” Proc. SPIE 3902, 436–448 (2000). [CrossRef]
  10. L. Lamaignère, M. Balas, R. Courchinoux, T. Donval, J. C. Poncetta, S. Reyné, B. Bertussi, H. Bercegol, “Parametric study of laser-induced surface damage density measurements: toward reproducibility,” J. Appl. Phys. 107, 023105 (2010). [CrossRef]
  11. L. Lamaignère, G. Dupuy, T. Donval, P. Grua, H. Bercegol, “Comparison of laser-induced surface damage density measurements with small and large beams: toward representativeness,” Appl. Opt. 50, 441–446 (2011). [CrossRef] [PubMed]
  12. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20–150 J/cm2),” Opt. Express 20, 11561–11573 (2012). [CrossRef] [PubMed]
  13. M. J. Matthews, M. D. Feit, “Effect of random clustering on surface damage density estimates,” Proc. SPIE 6720, 67201J (2007). [CrossRef]
  14. C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17, 1958–1962 (2006). [CrossRef]
  15. C. W. Carr, M. J. Matthews, J. D. Bude, M. L. Spaeth, “The effect of laser pulse duration on laser-induced damage in KDP and SiO2,” Proc. SPIE 6403, 64030K (2007). [CrossRef]
  16. C. W. Carr, J. B. Trenholme, M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett 90, 041110 (2007). [CrossRef]
  17. C. W. Carr, D. Cross, M. D. Feit, J. D. Bude, “Using shaped pulses to probe energy deposition during laser-induced damage of SiO2 surfaces,” Proc. SPIE 7132, 71321C (2008). [CrossRef]
  18. M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001). [CrossRef]
  19. G. Razé, J. M. Morchain, M. Loiseau, L. Lamaignère, M. Josse, H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003). [CrossRef]
  20. M. A. Norton, E. E. Donohue, W. G. Hollingsworth, J. N. McElroy, R. P. Hackel, “Growth of laser initiated damage in fused silica at 527 nm,” Proc. SPIE 5273, 236–243 (2004). [CrossRef]
  21. M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage in sio2 under multiple wavelength irradiation,” Proc. SPIE 5991, 599108 (2005). [CrossRef]
  22. M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2007). [CrossRef]
  23. L. Lamaignère, S. Reyné, M. Loiseau, J. C. Poncetta, H. Bercegol, “Effects of wavelengths combination on initiation and growth of laser-induced surface damage in SiO2,” Proc. SPIE 6720, 67200F (2007). [CrossRef]
  24. M. A. Norton, A. V. Carr, C. W. Carr, E. E. Donohue, M. D. Feit, W. G. Hollingsworth, Z. Liao, R. A. Negres, A. M. Rubenchik, P. Wegner, “Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation,” Proc. SPIE 7132, 71321H (2008). [CrossRef]
  25. R. A. Negres, M. A. Norton, D. A. Cross, C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18, 19966–19976 (2010). [CrossRef] [PubMed]
  26. R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20, 13030–13039 (2012). [CrossRef] [PubMed]
  27. R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE 7504, 750412 (2009). [CrossRef]
  28. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Cer. Soc. 94, 416–428 (2011). [CrossRef]
  29. M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, P. Wegner, “A large aperture, high energy laser system for optics and optical components testing,” Proc. SPIE 5273, 325–333 (2004). [CrossRef]
  30. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω(355 nm) laser pulses,” J. Non-cryst. Solids 352, 255–272 (2006). [CrossRef]
  31. G. Hu, Y. Zhao, D. Li, Q. Xiao, J. Shao, Z. Fan, “Studies of laser damage morphology reveal subsurface feature in fused silica,” Surf. Interface Anal. 42, 1465–1468 (2010). [CrossRef]
  32. G. M. Guss, I. L. Bass, R. P. Hackel, C. Mailhiot, S. G. Demos, “In situ monitoring of surface postprocessing in large-aperture fused silica optics with optical coherence tomography,” Appl. Opt. 47, 4569–4573 (2008). [CrossRef] [PubMed]
  33. B. Bertussi, P. Cormont, S. Palmier, P. Legros, J. L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17, 11469–11479 (2009). [CrossRef] [PubMed]
  34. S. G. Demos, M. Staggs, M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41, 3628–3633 (2002). [CrossRef] [PubMed]
  35. M. J. Matthews, C. W. Carr, H. A. Bechtel, R. N. Raman, “Synchrotron radiation infrared microscopic study of non-bridging oxygen modes associated with laser-induced breakdown of fused silica,” Appl. Phys. Lett. 99, 151109 (2011). [CrossRef]
  36. B. R. Lawn, Fracture of Brittle Solids, 2nd ed. (Cambridge University, 1993). [CrossRef]
  37. L. Lamaignère, G. Dupuy, A. Bourgeade, A. Benoist, A. Roques, R. Courchinoux, “Damage growth in fused silica optics at 351 nm: refined modeling of large-beam experiments,” Appl. Phys. B, 1–10 (2013). [CrossRef]
  38. Z. M. Liao, G. M. Abdulla, R. A. Negres, D. A. Cross, C. W. Carr, “Predictive modeling techniques for nanosecond-laser damage growth in fused silica optics,” Opt. Express 20, 15569–15579 (2012). [CrossRef] [PubMed]
  39. V. Kachitvichyanukul, B. W. Schmeiser, “Binomial random variate generation,” Commun. ACM 31, 216–222 (1988). [CrossRef]
  40. N. L. Johnson, S. Kotz, N. Balakrishnan, “Weibull distributions,” in Continuous Univariate Distributions, 2nd ed. (Wiley, 1994), Vol. 1, pp. 628–722.
  41. R. A. Negres, Z. M. Liao, G. M. Abdulla, D. A. Cross, M. A. Norton, C. W. Carr, “Exploration of the multi-parameter space of nanosecond-laser damage growth in fused silica optics,” Appl. Opt. 50, D12–D20 (2011). [CrossRef] [PubMed]
  42. C. P. Robert, G. Casella, Monte Carlo Statistical Methods, 2nd ed. (Springer, 2004). [CrossRef]
  43. M. J. Matthews, R. A. Negres, C. W. Carr, A. M. Rubenchik, Lawrence Livermore National Laboratory, are preparing a manuscript to be called “Probability distribution model for multi-shot laser damage on fused silica surfaces.”
  44. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004). [CrossRef] [PubMed]
  45. S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7, 444–452 (2013). [CrossRef]
  46. S. G. Demos, R. N. Raman, R. A. Negres, “Time-resolved imaging of processes associated with exit-surface damage growth in fused silica following exposure to nanosecond laser pulses,” Opt. Express 21, 4875–4888 (2013). [CrossRef] [PubMed]
  47. A. A. Griffith, “The phenomena of rupture and flow in solids,” Philos. Trans. R. Soc. London A 221, 163–198 (1921). [CrossRef]
  48. S. M. Wiederhorn, “Fracture surface energy of glass,” J. Am. Cer. Soc. 52, 99–105 (1969). [CrossRef]
  49. F. Y. Gènin, A. Salleo, T. V. Pistor, L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18, 2607–2616 (2001). [CrossRef]
  50. R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).
  51. A. C. Davison, D. V. Hinkley, Bootstrap Methods and Their Applications (Cambridge University, 1997). [CrossRef]
  52. A. Canty, B. Ripley, boot: Bootstrap R (S-Plus) Functions(2012), R package version 1.3–7.
  53. W. N. Venables, B. D. Ripley, Modern Applied Statistics With S, 4th ed. (Springer, 2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited