OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 3902–3910

Waveguide-integrated microdisk light-emitting diode and photodetector based on Ge quantum dots

Xuejun Xu, Takuya Maruizumi, and Yasuhiro Shiraki  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 3902-3910 (2014)
http://dx.doi.org/10.1364/OE.22.003902


View Full Text Article

Enhanced HTML    Acrobat PDF (1539 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Microdisk integrated with a bus waveguide is fabricated on silicon-on-insulator substrate containing Ge self-assembled quantum dots as active medium. The device is demonstrated to be operated as both light-emitting diode and photodetector. At forward bias, carriers are injected into the microdisk and light emission at 1.45–1.6 μm is extracted through the waveguide via microdisk-waveguide coupling. Sharp resonant peaks with Q-factor as high as 1350 are obtained in the electroluminescence spectra, corresponding to whispering gallery modes of the microdisk. At reverse bias, the device functions as a resonant cavity enhanced photodetector with wavelength-selective photo-response. The photo-current at resonant wavelength of 1533.65 nm is 50 times larger than that at non-resonant wavelength. The dark current density of the photodetector is as low as 0.29 mA/cm2 up to −10 V bias and the peak responsivity is 5.645 mA/W.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.3670) Optical devices : Light-emitting diodes
(230.5160) Optical devices : Photodetectors
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Integrated Optics

History
Original Manuscript: November 8, 2013
Revised Manuscript: January 20, 2014
Manuscript Accepted: February 3, 2014
Published: February 12, 2014

Citation
Xuejun Xu, Takuya Maruizumi, and Yasuhiro Shiraki, "Waveguide-integrated microdisk light-emitting diode and photodetector based on Ge quantum dots," Opt. Express 22, 3902-3910 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-3902


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006). [CrossRef]
  2. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12, 1699–1705 (2006). [CrossRef]
  3. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15, 11272–11277 (2007). [CrossRef] [PubMed]
  4. X. Sun, J. Liu, L. C. Kimerling, J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95, 011911 (2009). [CrossRef]
  5. X. Sun, J. Liu, L. C. Kimerling, J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34, 1198–1200 (2009). [CrossRef] [PubMed]
  6. S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17, 10019–10024 (2009). [CrossRef] [PubMed]
  7. J. Liu, X. Sun, L. C. Kimerling, J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett. 34, 1738–1740 (2009). [CrossRef] [PubMed]
  8. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35, 679–681 (2010). [CrossRef] [PubMed]
  9. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012). [CrossRef] [PubMed]
  10. R. Apetz, L. Vescan, A. Hartmann, C. Dieker, H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66, 445–447 (1995). [CrossRef]
  11. H. Sunamura, N. Usami, Y. Shiraki, S. Fukatsu, “Island formation during growth of Ge on Si (100): A study using photoluminescence spectroscopy,” Appl. Phys. Lett. 66, 3024–3026 (1995). [CrossRef]
  12. W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003). [CrossRef]
  13. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  14. J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998). [CrossRef]
  15. J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102 (2006). [CrossRef]
  16. M. El Kurdi, X. Checoury, S. David, T. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16, 8780–8791 (2008). [CrossRef] [PubMed]
  17. X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18, 1830–1838 (2012). [CrossRef]
  18. J. Xia, Y. Takeda, N. Usami, T. Maruizumi, Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18, 13945–13950 (2010). [CrossRef] [PubMed]
  19. X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20, 14714–14721 (2012). [CrossRef] [PubMed]
  20. S. Koseki, B. Zhang, K. De Greve, Y. Yamamoto, “Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides,” Appl. Phys. Lett. 94, 051110 (2009). [CrossRef]
  21. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, M. J. Paniccia, “31 Ghz Ge n–i–p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15, 13965–13971 (2007). [CrossRef] [PubMed]
  22. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19, 24897–24904 (2011). [CrossRef]
  23. M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 80, 509–511 (2002). [CrossRef]
  24. S. Tong, J. Liu, J. Wan, K. L. Wang, “Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate,” Appl. Phys. Lett. 80, 1189–1191 (2002). [CrossRef]
  25. M. S. Unlu, S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995). [CrossRef]
  26. O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005). [CrossRef]
  27. C. Li, R. Mao, Y. Zuo, L. Zhao, W. Shi, L. Luo, B. Cheng, J. Yu, Q. Wang, “1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror,” Appl. Phys. Lett. 85, 2697–2699 (2004). [CrossRef]
  28. H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009). [CrossRef]
  29. J. Doylend, P. Jessop, A. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18, 14671–14678 (2010). [CrossRef] [PubMed]
  30. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002). [CrossRef]
  31. M. Oxborrow, “Ex-house 2d finite-element simulation of the whispering-gallery modes of arbitrarily shaped axisymmetric electromagnetic resonators,” arXiv preprint quant-ph/0607156 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited