OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 3918–3923

RF photonic front-end integrating with local oscillator loop

H. Yu, M. Chen, H. Gao, S. Yang, H. Chen, and S. Xie  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 3918-3923 (2014)
http://dx.doi.org/10.1364/OE.22.003918


View Full Text Article

Enhanced HTML    Acrobat PDF (1606 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Broadband Radio frequency (RF) photonic front-ends are one of the vital applications of the microwave photonics. A tunable and broadband RF photonic front-end integrating with the optoelectronic oscillator (OEO) based local oscillator has been proposed and experimentally demonstrated, in which only one phase modulator (PM) is employed thanks to the characteristic of the PM. The silicon-on-insulator based narrow-bandwidth band-pass filter is introduced for signal processing. The application condition of the proposed RF photonic front-end has been discussed and the performance of the front-end has also been measured. The SFDR at a frequency of about 7.02 GHz is measured to be 88.6 dB-Hz2/3.

© 2014 Optical Society of America

OCIS Codes
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(230.3120) Optical devices : Integrated optics devices
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Integrated Optics

History
Original Manuscript: November 21, 2013
Revised Manuscript: January 28, 2014
Manuscript Accepted: February 7, 2014
Published: February 12, 2014

Citation
H. Yu, M. Chen, H. Gao, S. Yang, H. Chen, and S. Xie, "RF photonic front-end integrating with local oscillator loop," Opt. Express 22, 3918-3923 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-3918


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Capmany, D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007). [CrossRef]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009). [CrossRef]
  3. R. C. J. Hsu, A. Ayazi, B. Houshmand, B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007). [CrossRef]
  4. R. B. Waterhouse, D. Novak, “Integrated Antenna/Electro-Optic Modulator for RF Photonic Front-Ends,” Proceedings of 2011 International Microwave Symposium, Baltimore, MD, June 2011. [CrossRef]
  5. J. Chou, J. A. Conway, G. A. Sefler, G. C. Valley, B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightwave Technol. 27(22), 5073–5077 (2009). [CrossRef]
  6. V. S. Ilchenko, A. A. Savchenkov, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Photonic Front-end for Millimeter Wave Applications,” Proc. of 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 1–2, November 2008.
  7. A. B. Matsko, V. S. Ilchenko, P. Koonath, J. Byrd, A. A. Savchenkov, D. Seidel, L. Maleki, “RF photonic receiver front-end based on crystalline whispering gallery mode resonators,” Proc. of 2009 IEEE Radar Conference, 1–6, May 2009. [CrossRef]
  8. T. R. Clark, R. Waterhouse, “Photonics for RF Front Ends,” IEEE Microw. Mag. 12(3), 87–95 (2011). [CrossRef]
  9. S. A. Pappert, B. Krantz, “RF photonics for radar front-ends,” in Proc. IEEE Radar Conf., Boston, MA, 965–970 (2007).
  10. X. Guan, A. Hajimiri, “A 24-GHz CMOS Front-End,” IEEE J. Solid-State Circuits 39(2), 368–373 (2004). [CrossRef]
  11. R. T. Logan, E. Gertel, “Millimeter-wave photonic downconvertors: Theory and demonstrations,” Proc. SPIE 2560, 58–69 (1995). [CrossRef]
  12. A. Agarwal, T. Banwell, T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” J. Lightwave Technol. 29(16), 2394–2401 (2011). [CrossRef]
  13. B. M. Haas, T. E. Murphy, “Linearized downconverting microwave photonic link using dual-wavelength phase modulation and optical filtering,” IEEE Photon. J. 3(1), 1–12 (2011). [CrossRef]
  14. L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011). [CrossRef]
  15. X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38(5), 655–657 (2013). [CrossRef] [PubMed]
  16. D. Zhu, S. Pan, S. Cai, D. Ben, “High-Performance Photonic Microwave Downconverter Based on a Frequency-Doubling Optoelectronic Oscillator,” J. Lightwave Technol. 30(18), 3036–3042 (2012). [CrossRef]
  17. W. Shieh, S. X. Yao, G. Lutes, L. Maleki, “Microwave signal mixing by using a fiber-based optoelectronic oscillator for wavelength division multiplexed systems,” in Opt. Fiber Commun. Conf. Tech. Dig., 358–359 (1997). [CrossRef]
  18. H. Yu, M. Chen, P. Li, S. Yang, H. Chen, S. Xie, “Silicon-on-insulator narrow-passband filter based on cascaded MZIs incorporating enhanced FSR for downconverting analog photonic links,” Opt. Express 21(6), 6749–6755 (2013). [CrossRef] [PubMed]
  19. X. Zhang, B. Lee, C. Y. Lin, A. X. Wang, A. Hosseini, R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photon. J. 4(6), 2214–2228 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited