OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 3944–3949

ITO DBR Electrodes Fabricated on PET Substrate for Organic Electronics

W. C. Tien and A. K. Chu  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 3944-3949 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1406 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A conductive distributed Bragg reflector (DBR) fabricated on PET substrate using the single indium tin oxide (ITO) material is proposed. The large index contrast of the DBRs was obtained by depositing alternating layers of dense and porous ITO films. The high refractive index of the dense ITO films was achieved by long-throw radio-frequency magnetron sputtering technique at room temperature. On the other hand, the porous ITO films with low refractive index were fabricated by supercritical CO2 (SCCO2) treatment at 60 °C. The index contrast of the dense and porous ITO films as larger as 0.59 at blue spectral range was obtained. For the 4.5-period ITO DBR fabricated on PET substrate, the reflectance and sheet resistance of 85.1% and 47 Ω/◻ were achieved at 475 nm.

© 2014 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(230.1480) Optical devices : Bragg reflectors

ToC Category:

Original Manuscript: November 29, 2013
Revised Manuscript: January 17, 2014
Manuscript Accepted: February 3, 2014
Published: February 12, 2014

W. C. Tien and A. K. Chu, "ITO DBR Electrodes Fabricated on PET Substrate for Organic Electronics," Opt. Express 22, 3944-3949 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. Jou, S. M. Shen, C. R. Lin, Y. S. Wang, Y. C. Chou, S. Z. Chen, Y. C. Jou, “Efficient very-high color rendering index organic light-emitting diode,” Org. Electron. 12(5), 865–868 (2011). [CrossRef]
  2. F. Ventsch, M. C. Gather, K. Meerholz, “Towards organic light-emitting diode microdisplays with sub-pixel patterning,” Org. Electron. 11(1), 57–61 (2010). [CrossRef]
  3. J. Chang, C. P. Lee, D. Kumar, P. W. Chen, L. Y. Lin, K. R. Justin Thomas, K. C. Ho, “Co-sensitization promoted light harvesting for organic dye-sensitized solar cells using unsymmetrical squaraine dye and novel pyrenoimidazole-based dye,” J. Power Sources 240, 779–785 (2013). [CrossRef]
  4. B. Ray, M. A. Alam, “Random vs regularized OPV: Limits of performance gain of organic bulk heterojunction solar cells by morphology engineering,” Sol. Energy Mater. Sol. Cells 99, 204–212 (2012). [CrossRef]
  5. L. Hou, Q. Hou, Y. Mo, J. Peng, Y. Cao, “All-organic flexible polymer microcavity light-emitting diodes using 3M reflective multilayer polymer mirrors,” Appl. Phys. Lett. 87(24), 243504 (2005). [CrossRef]
  6. S. M. Jeong, Y. Takanishi, K. Ishikawa, H. Takezoe, “Flexible Microcavity Organic Light-Emitting Diodes with Wide-Band Organic Distributed Bragg Reflector,” Jpn. J. Appl. Phys. 45(28), L737–L739 (2006). [CrossRef]
  7. R. H. Horng, W. K. Wang, S. Y. Huang, D. S. Wuu, “Effect of Resonant Cavity in Wafer-Bonded Green InGaN LED With Dielectric and Silver Mirrors,” IEEE Photon. Technol. Lett. 18(3), 457–459 (2006). [CrossRef]
  8. N. T. Gabriel, S. S. Kim, J. J. Talghader, “Control of thermal deformation in dielectric mirrors using mechanical design and atomic layer deposition,” Opt. Lett. 34(13), 1958–1960 (2009). [CrossRef] [PubMed]
  9. T. C. Lu, T. T. Kao, C. C. Kao, J. T. Chu, K. F. Yeh, L. F. Lin, Y. C. Peng, H. W. Huang, H. C. Kuo, S. C. Wang, “GaN-Based High-Q Vertical-Cavity Light-Emitting Diodes,” IEEE Electron Device Lett. 28(10), 884–886 (2007). [CrossRef]
  10. B. Ray, P. R. Nair, M. A. Alam, “Annealing dependent performance of organic bulk-heterojunction solar cells: A theoretical perspective,” Sol. Energy Mater. Sol. Cells 95(12), 3287–3294 (2011). [CrossRef]
  11. F. Qiao, “Improved performance of photovoltaic devices based on poly(3-hexylthiophene) nanofibers and CdSe quantum dots through ligand exchange and annealing treatment,” Solid-State Electron. 82, 25–28 (2013). [CrossRef]
  12. M. J. Chuang, H. F. Huang, C. H. Wen, A. K. Chu, “On the structure and surface chemical composition of indium–tin oxide films prepared by long-throw magnetron sputtering,” Thin Solid Films 518(8), 2290–2294 (2010). [CrossRef]
  13. T. D. N. Phan, H. D. Pham, S. Kim, E. S. Oh, E. J. Kim, E. W. Shin, “Surfactant removal from mesoporous TiO2 nanocrystals by supercritical CO2 fluid extraction,” J. Ind. Eng. Chem. 16(5), 823–828 (2010). [CrossRef]
  14. J. Zhang, S. Burrows, C. Gleason, M. A. Matthews, M. J. Drews, M. Laberge, Y. H. An, “Sterilizing Bacillus pumilus spores using supercritical carbon dioxide,” J. Microbiol. Methods 66(3), 479–485 (2006). [CrossRef] [PubMed]
  15. W. C. Tien, A. K. Chu, “Double-layer ITO antireflection electrodes fabricated at low temperature,” Sol. Energy Mater. Sol. Cells 100, 258–262 (2012). [CrossRef]
  16. W. C. Tien, A. K. Chu, “ITO distributed Bragg reflectors fabricated at low temperature for light-trapping in thin-film solar cells,” Sol. Energy Mater. Sol. Cells 120, 18–22 (2014). [CrossRef]
  17. G. A. Luurtsema, Spin Coating for Rectangular Substrates (University of Berkeley, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited