OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 3968–3982

Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields

Atsushi Shibukawa, Atsushi Okamoto, Masanori Takabayashi, and Akihisa Tomita  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 3968-3982 (2014)
http://dx.doi.org/10.1364/OE.22.003968


View Full Text Article

Enhanced HTML    Acrobat PDF (5141 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a spatial cross modulation method using a random diffuser and a phase-only spatial light modulator (SLM), by which arbitrary complex-amplitude fields can be generated with higher spatial resolution and diffraction efficiency than off-axis and double-phase computer-generated holograms. Our method encodes the original complex object as a phase-only diffusion image by scattering the complex object using a random diffuser. In addition, all incoming light to the SLM is consumed for a single diffraction order, making a diffraction efficiency of more than 90% possible. This method can be applied for holographic data storage, three-dimensional displays, and other such applications.

© 2014 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(090.1970) Holography : Diffractive optics
(210.2860) Optical data storage : Holographic and volume memories
(110.7348) Imaging systems : Wavefront encoding

ToC Category:
Diffraction and Gratings

History
Original Manuscript: December 26, 2013
Revised Manuscript: February 7, 2014
Manuscript Accepted: February 7, 2014
Published: February 12, 2014

Citation
Atsushi Shibukawa, Atsushi Okamoto, Masanori Takabayashi, and Akihisa Tomita, "Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields," Opt. Express 22, 3968-3982 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-3968


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. W. Lohmann, D. P. Paris, “Binary Fraunhofer holograms, generated by computer,” Appl. Opt. 6(10), 1739–1748 (1967). [CrossRef] [PubMed]
  2. A. W. Lohmann, D. P. Paris, “Computer generated spatial filters for coherent optical data processiing,” Appl. Opt. 7(4), 651–655 (1968). [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  4. V. Bagnoud, J. D. Zuegel, “Independent phase and amplitude control of a laser beam by use of a single-phase-only spatial light modulator,” Opt. Lett. 29(3), 295–297 (2004). [CrossRef] [PubMed]
  5. Y. Sando, M. Itoh, T. Yatagai, “Holographic three-dimensional display synthesized from three-dimensional Fourier spectra of real existing objects,” Opt. Lett. 28(24), 2518–2520 (2003). [CrossRef] [PubMed]
  6. A. J. MacGovern, J. C. Wyant, “Computer generated holograms for testing optical elements,” Appl. Opt. 10(3), 619–624 (1971). [CrossRef] [PubMed]
  7. V. Arrizón, G. Méndez, D. Sánchez-de-La-Llave, “Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators,” Opt. Express 13(20), 7913–7927 (2005). [CrossRef] [PubMed]
  8. C. K. Hsueh, A. A. Sawchuk, “Computer-generated double-phase holograms,” Appl. Opt. 17(24), 3874–3883 (1978). [CrossRef] [PubMed]
  9. J. M. Florence, R. D. Juday, “Full complex spatial filtering with a phase mostly DMD,” Proc. SPIE 1558, 487–498 (1991). [CrossRef]
  10. Z. Göröcs, G. Erdei, T. Sarkadi, F. Ujhelyi, J. Reményi, P. Koppa, E. Lorincz, “Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter,” Opt. Lett. 32(16), 2336–2338 (2007). [CrossRef] [PubMed]
  11. L. B. Lesem, P. M. Hirch, J. A. Jordan., “The kinoform: A new wavefront reconstruction device,” IBM J. Res. Develop. 13(2), 150–155 (1969). [CrossRef]
  12. A. V. Oppenheim, J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69(5), 529–541 (1981). [CrossRef]
  13. J. L. Horner, P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23(6), 812–816 (1984). [CrossRef] [PubMed]
  14. M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, A. Wood, “3D electronic holography display system using a 100Mega-pixel spatial light modulator,” Proc. SPIE 5249, 297–308 (2004). [CrossRef]
  15. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5(8), 1303–1311 (1966). [CrossRef] [PubMed]
  16. K. Anderson, K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29(12), 1402–1404 (2004). [CrossRef] [PubMed]
  17. M. Takabayashi, A. Okamoto, “Self-referential holography and its applications to data storage and phase-to-intensity conversion,” Opt. Express 21(3), 3669–3681 (2013). [CrossRef] [PubMed]
  18. K. Zukeran, A. Okamoto, M. Takabayashi, A. Shibukawa, K. Sato, A. Tomita, “Double-referential holography and spatial quadrature amplitude modulation,” Jpn. J. Appl. Phys. 52(9S2), 09LD13 (2013). [CrossRef]
  19. L. G. Shirley, N. George, “Wide-angle diffuser transmission functions and far-zone speckle,” J. Opt. Soc. Am. A 4(4), 734–745 (1987). [CrossRef]
  20. A. Okamoto, K. Kunori, M. Takabayashi, A. Tomita, K. Sato, “Holographic diversity interferometry for optical storage,” Opt. Express 19(14), 13436–13444 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited