OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 3983–3990

A rapid two-photon fabrication of tube array using an annular Fresnel lens

Chenchu Zhang, Yanlei Hu, Jiawen Li, Guoqiang Li, Jiaru Chu, and Wenhao Huang  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 3983-3990 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1845 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A rapid method of fabricating microscopic tubular structures via two-photon polymerization is presented. Novel Fresnel lens is designed and applied to modulate the light field into a uniform ring pattern with controllable diameters. Comparing with the conventional holographic processing method, Fresnel lens shows higher uniformity and better flexibility, while easier to generate. This versatile method provides a powerful solution to produce tube structure array within several seconds.

© 2014 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(220.4000) Optical design and fabrication : Microstructure fabrication
(220.4610) Optical design and fabrication : Optical fabrication
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Laser Microfabrication

Original Manuscript: January 15, 2014
Revised Manuscript: January 30, 2014
Manuscript Accepted: January 30, 2014
Published: February 12, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Chenchu Zhang, Yanlei Hu, Jiawen Li, Guoqiang Li, Jiaru Chu, and Wenhao Huang, "A rapid two-photon fabrication of tube array using an annular Fresnel lens," Opt. Express 22, 3983-3990 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011). [CrossRef] [PubMed]
  2. G. Huang, Y. Mei, D. J. Thurmer, E. Coric, O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009). [CrossRef] [PubMed]
  3. K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009). [CrossRef] [PubMed]
  4. X. Yang, L. Wang, S. Yang, “Facile route to fabricate large-scale silver microtubes,” Mater. Lett. 61(14-15), 2904–2907 (2007). [CrossRef]
  5. D. J. Thurmer, C. Deneke, Y. Mei, O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006). [CrossRef]
  6. S. Kawata, H. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208, 153–158 (2003). [CrossRef]
  7. K. Lee, R. H. Kim, D. Yang, S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008). [CrossRef]
  8. S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys., A Mater. Sci. Process. 80(4), 683–685 (2005). [CrossRef]
  9. T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001). [CrossRef]
  10. H. Takahashi, S. Hasegawa, A. Takita, Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008). [PubMed]
  11. Y. Hayasaki, T. Sugimoto, A. Takita, N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005). [CrossRef]
  12. S. Hasegawa, Y. Hayasaki, N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006). [CrossRef] [PubMed]
  13. J. Amako, H. Miura, T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt. 34(17), 3165–3171 (1995). [CrossRef] [PubMed]
  14. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express 18(11), 11754–11762 (2010). [CrossRef] [PubMed]
  15. C. Hnatovsky, V. G. Shvedov, W. Krolikowski, A. V. Rode, “Materials processing with a tightly focused femtosecond laser vortex pulse,” Opt. Lett. 35(20), 3417–3419 (2010). [CrossRef] [PubMed]
  16. E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012). [CrossRef]
  17. S. Kawata, H. B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001). [CrossRef] [PubMed]
  18. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited