OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4000–4005

Variation of exciton emissions of ZnO whiskers reversibly tuned by axial tensile strain

Bin Wei, Yuan Ji, Xiao-Dong Han, Ze Zhang, and Jin Zou  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 4000-4005 (2014)
http://dx.doi.org/10.1364/OE.22.004000


View Full Text Article

Enhanced HTML    Acrobat PDF (1224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Applying strain on semiconductors is a powerful method to modulate its electronic structures and optical properties. In this study, the behavior of liquid-nitrogen exciton emissions and the longitudinal optical phonon–exciton interactions of tensile strained [0001]-orientated ZnO whiskers were investigated using in situ cathodoluminescence spectroscopy. It has been found that, under the axial tensile strain, various exciton emissions shift to the long wavelength and their shifts have a linear relationship with the applied strain. This linear relationship and reversible shift suggest that the strain plays a dominating role in manipulating light emissions of axially strained ZnO whiskers.

© 2014 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials
(250.1500) Optoelectronics : Cathodoluminescence
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: October 30, 2013
Revised Manuscript: January 31, 2014
Manuscript Accepted: February 4, 2014
Published: February 13, 2014

Citation
Bin Wei, Yuan Ji, Xiao-Dong Han, Ze Zhang, and Jin Zou, "Variation of exciton emissions of ZnO whiskers reversibly tuned by axial tensile strain," Opt. Express 22, 4000-4005 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-4000


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277(5334), 1971–1975 (1997). [CrossRef]
  2. X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, Z. L. Wang, “Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism,” Nano Lett. 7(2), 452–457 (2007). [CrossRef] [PubMed]
  3. Q. Deng, Y. Cheng, Y. Yue, L. Zhang, Z. Zhang, X. Han, E. Ma, “Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding,” Acta Mater. 59(17), 6511–6518 (2011). [CrossRef]
  4. Y. Yue, P. Liu, Z. Zhang, X. Han, E. Ma, “Approaching the theoretical elastic strain limit in copper nanowires,” Nano Lett. 11(8), 3151–3155 (2011). [CrossRef] [PubMed]
  5. K. Zheng, X. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, Z. Zhang, “Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires,” Nano Lett. 9(6), 2471–2476 (2009). [CrossRef] [PubMed]
  6. R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, X. Han, “Piezoresistance behaviors of ultra-strained SiC nanowires,” Appl. Phys. Lett. 101(23), 233109 (2012). [CrossRef]
  7. Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, J. Jiang, “Super elastic strain limit in metallic glass films,” Sci. Rep. 2, 852 (2012).
  8. B. Chen, Q. Gao, Y. Wang, X. Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, C. Jagadish, “Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett. 13(7), 3169–3172 (2013). [CrossRef] [PubMed]
  9. Y. F. Hu, Y. F. Gao, S. Singamaneni, V. V. Tsukruk, Z. L. Wang, “Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt,” Nano Lett. 9(7), 2661–2665 (2009). [CrossRef] [PubMed]
  10. G. Signorello, S. Karg, M. T. Björk, B. Gotsmann, H. Riel, “Tuning the Light Emission from GaAs Nanowires over 290 meV with Uniaxial Strain,” Nano Lett. 13, 917–924 (2012). [PubMed]
  11. J. R. Jain, A. Hryciw, T. M. Baer, D. A. Miller, M. L. Brongersma, R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics 6(6), 398–405 (2012). [CrossRef]
  12. M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009). [CrossRef] [PubMed]
  13. A. Little, A. Hoffman, N. M. Haegel, “Optical attenuation coefficient in individual ZnO nanowires,” Opt. Express 21(5), 6321–6326 (2013). [CrossRef] [PubMed]
  14. M. Ding, D. Zhao, B. Yao, S. e, Z. Guo, L. Zhang, D. Shen, “The ultraviolet laser from individual ZnO microwire with quadrate cross section,” Opt. Express 20(13), 13657–13662 (2012). [CrossRef] [PubMed]
  15. F. Fang, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, “Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires,” J. Phys. Chem. C 114(29), 12477–12480 (2010). [CrossRef]
  16. H. Xue, N. Pan, M. Li, Y. Wu, X. Wang, J. G. Hou, “Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence,” Nanotechnology 21(21), 215701 (2010). [CrossRef] [PubMed]
  17. B. Yan, R. Chen, W. W. Zhou, J. X. Zhang, H. D. Sun, H. Gong, T. Yu, “Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires,” Nanotechnology 21(44), 445706 (2010). [CrossRef] [PubMed]
  18. Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).
  19. C. P. Dietrich, M. Lange, F. J. Klupfel, H. von Wenckstern, R. Schmidt-Grund, M. Grundmann, “Strain distribution in bent ZnO microwires,” Appl. Phys. Lett. 98(3), 031105 (2011). [CrossRef]
  20. X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009). [CrossRef]
  21. W. Yang, Y. Ma, Y. Wang, C. Meng, X. Wu, Y. Ye, L. Dai, L. Tong, X. Liu, Q. Yang, “Bending effects on lasing action of semiconductor nanowires,” Opt. Express 21(2), 2024–2031 (2013). [CrossRef] [PubMed]
  22. B. Wei, K. Zheng, Y. Ji, Y. F. Zhang, Z. Zhang, X. D. Han, “Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain,” Nano Lett. 12(9), 4595–4599 (2012). [CrossRef] [PubMed]
  23. M. R. He, J. Zhu, “Defect-dominated diameter dependence of fracture strength in single-crystalline ZnO nanowires: In situ experiments,” Phys. Rev. B 83(16), 161302 (2011). [CrossRef]
  24. C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96(7), 075505 (2006). [CrossRef] [PubMed]
  25. R. Mendelsberg, M. Allen, S. Durbin, R. Reeves, “Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO,” Phys. Rev. B 83(20), 205202 (2011). [CrossRef]
  26. S. Xu, W. Guo, S. Du, M. M. Loy, N. Wang, “Piezotronic Effects on the Optical Properties of ZnO Nanowires,” Nano Lett. 12(11), 5802–5807 (2012). [CrossRef] [PubMed]
  27. X.-W. Fu, Z.-M. Liao, R. Liu, J. Xu, D. Yu, “Size-Dependent Correlations between Strain and Phonon Frequency in Individual ZnO Nanowires,” ACS Nano 7(10), 8891–8898 (2013). [CrossRef] [PubMed]
  28. A. Mang, K. Reimann, S. Rübenacke, “Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure,” Solid State Commun. 94(4), 251–254 (1995). [CrossRef]
  29. J. Wrzesinski, D. Fröhlich, “Two-photon and three-photon spectroscopy of ZnO under uniaxial stress,” Phys. Rev. B 56(20), 13087–13093 (1997). [CrossRef]
  30. J. Rowe, M. Cardona, F. Pollak, “Valence band symmetry and deformation potentials of ZnO,” Solid State Commun. 6(4), 239–242 (1968). [CrossRef]
  31. A. Segura, J. Sans, F. Manjon, A. Munoz, M. Herrera-Cabrera, “Optical properties and electronic structure of rock-salt ZnO under pressure,” Appl. Phys. Lett. 83(2), 278–280 (2003). [CrossRef]
  32. T. Onuma, T. Yamaguchi, T. Honda, “Electron‐beam incident‐angle‐resolved cathodoluminescence studies on bulk ZnO crystals,” Phys. Status Solidi 10(5c), 869–872 (2013). [CrossRef]
  33. H. Z. Xue, N. Pan, R. G. Zeng, M. Li, X. Sun, Z. J. Ding, X. P. Wang, J. G. Hou, “Probing the Surface Effect on Deep-Level Emissions of an Individual ZnO Nanowire via Spatially Resolved Cathodoluminescence,” J. Phys. Chem. C 113(29), 12715–12718 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited