OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4050–4058

Propagation of spoof surface plasmon on metallic square lattice: bending and splitting of self-collimated beams

Kap-Joong Kim, Jae-Eun Kim, Hae Yong Park, Yong-Hee Lee, Seong-Han Kim, Sun-Goo Lee, and Chul-Sik Kee  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 4050-4058 (2014)
http://dx.doi.org/10.1364/OE.22.004050


View Full Text Article

Enhanced HTML    Acrobat PDF (4231 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagation characteristics of spoof surface plasmon modes are studied in both real and reciprocal spaces. From the metallic square lattice, we obtain constant frequency contours by directly measuring electric fields in the microwave frequency regime. The anisotropy of the measured constant frequency contour supports the presence of the negative refraction and the self-collimation which are confirmed from measured electric fields. Additionally, we demonstrate the spoof surface plasmon beam splitter in which the splitting ratio of the self-collimated beam is controlled by varying the height of rods.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: November 18, 2013
Revised Manuscript: February 6, 2014
Manuscript Accepted: February 7, 2014
Published: February 13, 2014

Citation
Kap-Joong Kim, Jae-Eun Kim, Hae Yong Park, Yong-Hee Lee, Seong-Han Kim, Sun-Goo Lee, and Chul-Sik Kee, "Propagation of spoof surface plasmon on metallic square lattice: bending and splitting of self-collimated beams," Opt. Express 22, 4050-4058 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-4050


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons (Springer, 1988).
  2. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004). [CrossRef] [PubMed]
  3. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308, 670–672 (2005). [CrossRef] [PubMed]
  4. H. J. Rance, I. R. Hooper, A. P. Hibbins, and J. R. Sambles, “Structurally dictated anisotropic designer surface plasmons,” Appl. Phys. Lett.99, 181107 (2011). [CrossRef]
  5. S. J. Berry, T. Campbell, A. P. Hibbins, and J. R. Sambles, “Surface wave resonances supported on a square array of square metallic pillars,” Appl. Phys. Lett.100, 101107 (2012). [CrossRef]
  6. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2, 175–179 (2008). [CrossRef]
  7. J. T. Shen, P. B. Catrysse, and S. H. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94, 197401 (2005). [CrossRef] [PubMed]
  8. J. Shin, J.-T. Shen, P. B. Catrysse, and S. Fan, “Cut-through metal slit array as an anisotropic metamaterial film,” IEEE J. Sel. Top. Quantum Electron.12, 1116–1121 (2006). [CrossRef]
  9. C. Kittel, Introduction to Solid State Physics, 7th ed. (John Wiley, 1996).
  10. G. R. Fowles, Introduction to Modern Optics (Dover, 1989).
  11. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett.74, 1212–1214 (1999). [CrossRef]
  12. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater.5, 93–96 (2006). [CrossRef] [PubMed]
  13. B. Stein, E. Devaux, C. Genet, and T. W. Ebbesen, “Self-collimation of surface plasmon beams,” Opt. Lett.37, 1916–1918 (2010). [CrossRef]
  14. S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B83, 165109 (2011). [CrossRef]
  15. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89, 213902 (2002). [CrossRef] [PubMed]
  16. Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A77, 053821 (2008). [CrossRef]
  17. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B58, R10096 (1998). [CrossRef]
  18. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B65, 201104 (2002). [CrossRef]
  19. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature423, 604–605 (2003). [CrossRef] [PubMed]
  20. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett.96, 073907 (2006). [CrossRef] [PubMed]
  21. E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett.105, 223901 (2010). [CrossRef]
  22. B. Stein, J. Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett.105, 266804 (2010). [CrossRef]
  23. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett.91, 207401 (2003). [CrossRef] [PubMed]
  24. P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B71, 193105 (2005). [CrossRef]
  25. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7, 435–441 (2008). [CrossRef] [PubMed]
  26. B. Stein, J. Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett.105, 266804 (2010). [CrossRef]
  27. B. Stein, E. Devaux, C. Genet, and T. W. Ebbesen, “Self-collimation of surface plasmon beams,” Opt. Lett.37, 1916–1918 (2012). [CrossRef] [PubMed]
  28. C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98, 151113 (2011). [CrossRef]
  29. C. J. Regan, L. Grave de Peralta, and A. A. Bernussi, “Equifrequency curve dispersion in dielectric-loaded plasmonic crystals,” J. Appl. Phys.111, 073105 (2012). [CrossRef]
  30. T. J. Constant, A. P. Hibbins, A. J. Lethbridge, J. R. Sambles, E. K. Stone, and P. Vukusic, “Direct mapping of surface plasmon dispersion using imaging scatterometry,” Appl. Phys. Lett.102, 251107 (2013). [CrossRef]
  31. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, 2000).
  32. J. D. Jackson, Classical Electrodynamics (John Wiley, 1999).
  33. X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystal,” Appl. Phys. Lett.83, 3251 (2003). [CrossRef]
  34. X. Yu and S. Fan, “Anomalous reflections at photonic crystal surfaces,” Phys. Rev. E70, 055601 (2004). [CrossRef]
  35. S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of selfcollimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett.87, 181106 (2005). [CrossRef]
  36. S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express16, 4270–4277 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited