OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4083–4090

Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire

Rhys Adams, Mina Spasojevic, Mathieu Chagnon, Mahdi Malekiha, Jia Li, David V. Plant, and Lawrence R. Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 4083-4090 (2014)
http://dx.doi.org/10.1364/OE.22.004083


View Full Text Article

Enhanced HTML    Acrobat PDF (1213 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate error-free wavelength conversion of 28 GBaud 16-QAM single polarization (112 Gb/s) signals based on four-wave mixing in a dispersion engineered silicon nanowire (SNW). Wavelength conversion covering the entire C-band is achieved using a single pump. We characterize the performance of the wavelength converter subsystem through the electrical signal to noise ratio penalty as well as the bit error rate of the converted signal as a function of input signal power. Moreover, we evaluate the degradation of the optical signal to noise ratio due to wavelength conversion in the SNW.

© 2014 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing

ToC Category:
Optical Communications

History
Original Manuscript: December 13, 2013
Revised Manuscript: February 7, 2014
Manuscript Accepted: February 10, 2014
Published: February 13, 2014

Citation
Rhys Adams, Mina Spasojevic, Mathieu Chagnon, Mahdi Malekiha, Jia Li, David V. Plant, and Lawrence R. Chen, "Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire," Opt. Express 22, 4083-4090 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-4083


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Gnauck, P. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. Peckham, “Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol.29(4), 373–377 (2011).
  2. X. Ye, Y. Yin, S. B. Yoo, P. Mejia, R. Proietti, and V. Akella, “DOS: A scalable optical switch for datacenters,” in Proc. of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, 2010, p. 24. [CrossRef]
  3. S. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol.14, 955–966 (1996).
  4. G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA,” Opt. Express20(25), 27902–27907 (2012). [CrossRef] [PubMed]
  5. G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett.25(9), 791–794 (2013). [CrossRef]
  6. B. Filion, W. C. Ng, A. T. Nguyen, L. A. Rusch, and S. Larochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier,” Opt. Express21(17), 19825–19833 (2013). [CrossRef] [PubMed]
  7. S. T. Lu, G. Wei, and T. Kawanishi, “Experimental demonstration of wavelength conversions of optical 36 QAM and 64 QAM through FWM in HNLF,” Proc. IEEE Photonics Conference, Bellevue, WA, USA, September 2013, p.ThG1.4.
  8. X. Li, J. Yu, Z. Dong, and N. Chi, “Wavelength conversion of 544-Gbit/s dual-carrier PDM-16QAM signal based on the co-polarized dual-pump scheme,” Opt. Express20(19), 21324–21330 (2012). [CrossRef] [PubMed]
  9. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010). [CrossRef]
  10. M. A. Ettabib, K. Hammani, F. Parmigiani, L. Jones, A. Kapsalis, A. Bogris, D. Syvridis, M. Brun, P. Labeye, S. Nicoletti, and P. Petropoulos, “FWM-based wavelength conversion of 40 Gbaud PSK signals in a silicon germanium waveguide,” Opt. Express21(14), 16683–16689 (2013). [CrossRef] [PubMed]
  11. H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express19(21), 19886–19894 (2011). [CrossRef] [PubMed]
  12. H.-S. Jeong, D. W. Kim, K. H. Kim, and J.-M. Lee, “All-optical signal-conversion efficiency with a parameter-dependent four-wave-mixing process in a silicon nanowaveguide,” J. Korean Phys. Soc.62(3), 428–434 (2013). [CrossRef]
  13. Silicon Photonics Platform - ePIXfab: http://www.epixfab.eu (2013).
  14. IMEC News Release, http://www2.imec.be/be_en/press/imec-news/photonics2013.html (2013).
  15. L. K. Oxenløwe, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron.18(2), 996–1005 (2012). [CrossRef]
  16. M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun.283(19), 3678–3682 (2010). [CrossRef]
  17. M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, and D. V. Plant, “Colorless and preamplifierless reception using an integrated Si-photonic coherent receiver,” IEEE Photon. Technol. Lett.25(11), 1027–1030 (2013). [CrossRef]
  18. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express16(2), 804–817 (2008). [CrossRef] [PubMed]
  19. M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, M. S. Alfiad, A. Napoli, and B. Lankl, “DSP for coherent single-carrier receivers,” J. Lightwave Technol.27, 3614–3622 (2009).
  20. N. Cheng and J. C. Cartledge, “Noise transfer characteristics of cross-absorption modulation in an electroabsorption modulator,” IEEE Photon. Technol. Lett.17(4), 780–782 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited