OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4115–4122

Carrier transfer and thermal escape in CdTe/ZnTe quantum dots

Minh Tan Man and Hong Seok Lee  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4115-4122 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1776 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the carrier transfer and thermal escape in CdTe/ZnTe quantum dots (QDs) grown on a GaAs substrate. The significant emission-energy-dependent decay time at high excitation intensity (35 W/cm2) is attributed to the lateral transfer of carriers in the QDs. At low temperature (< 35 K) and low emission energy (< 2.168 eV), a thermally activated transition occurs between two different states separated by approximately 9 meV, while the main contribution to nonradiative processes is the thermal escape from QDs that is assisted by carrier scattering via the emission of longitudinal phonons through the excited QD states at high temperature, with energies of approximately 19 meV.

© 2014 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(260.3800) Physical optics : Luminescence
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: November 13, 2013
Revised Manuscript: January 24, 2014
Manuscript Accepted: January 24, 2014
Published: February 14, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Minh Tan Man and Hong Seok Lee, "Carrier transfer and thermal escape in CdTe/ZnTe quantum dots," Opt. Express 22, 4115-4122 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432(7013), 81–84 (2004). [CrossRef] [PubMed]
  2. E. U. Rafailov, M. A. Cataluna, W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007). [CrossRef]
  3. T. X. Lee, K. F. Gao, W. T. Chien, C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15(11), 6670–6676 (2007). [CrossRef] [PubMed]
  4. S. C. Lee, S. Krishna, S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009). [CrossRef] [PubMed]
  5. D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96(20), 203507 (2010). [CrossRef]
  6. J. H. Lee, J. C. Choi, H. S. Lee, “Size-dependent carrier dynamics and activation energy in CdTe/ZnTe quantum dots on Si substrates,” J. Mater. Res. 28(11), 1466–1470 (2013). [CrossRef]
  7. H. S. Lee, H. L. Park, T. W. Kim, “Optical properties of CdTe/ZnTe quantum dots sandwiched between two quantum wells with ZnTe separation barriers,” Appl. Phys. Lett. 89(18), 181929 (2006). [CrossRef]
  8. W. I. Han, J. H. Lee, J. S. Yu, J. C. Choi, H. S. Lee, “Carrier dynamics and activation energy of CdTe quantum dots in a CdxZn1−xTe quantum well,” Appl. Phys. Lett. 99(23), 231908 (2011). [CrossRef]
  9. G. Gourdon, P. Lavallard, “Exciton transfer between localized states in CdS1−xSex alloys,” Phys. Status Solidi B 153(2), 641–652 (1989). [CrossRef]
  10. V. I. Klimov, D. W. McBranch, “Auger-process-induced charge separation in semiconductor nanocrystals,” Phys. Rev. B 55(19), 13173–13179 (1997). [CrossRef]
  11. W. Yang, R. R. Lowe-Webb, H. Lee, P. C. Sercel, “Effect of carrier emission and retrapping on luminescence time decays in InAs/GaAs quantum dots,” Phys. Rev. B 56(20), 13314–13320 (1997). [CrossRef]
  12. V. I. Klimov, D. W. McBranch, “Femtosecond 1P-to-1S electron relaxation in strongly confined semiconductor nanocrystals,” Phys. Rev. Lett. 80(18), 4028–4031 (1998). [CrossRef]
  13. M. C. Nuss, W. Zinth, W. Kaiser, “Femtosecond carrier relaxation in semiconductor‐doped glasses,” Appl. Phys. Lett. 49(25), 1717–1719 (1986). [CrossRef]
  14. I. D. Rukhlenko, M. Y. Leonov, V. K. Turkov, A. P. Litvin, A. S. Baimuratov, A. V. Baranov, A. V. Fedorov, “Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot,” Opt. Express 20(25), 27612–27635 (2012). [CrossRef] [PubMed]
  15. V. I. Klimov, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 60(19), 13740–13749 (1999). [CrossRef]
  16. B. Valeur, Molecular Fluorescence (Wiley-VCH, 2002).
  17. O. Labeau, P. Tamarat, B. Lounis, “Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots,” Phys. Rev. Lett. 90(25), 257404 (2003). [CrossRef] [PubMed]
  18. A. Nakamura, H. Yamada, T. Tokizaki, “Size-dependent radiative decay of excitons in CuCl semiconducting quantum spheres embedded in glasses,” Phys. Rev. B Condens. Matter 40(12), 8585–8588 (1989). [CrossRef] [PubMed]
  19. T. Itoh, M. Furumiya, T. Ikehara, C. Gourdon, “Size-dependent radiative decay time of confined excitons in CuCl microcrystals,” Solid State Commun. 73(4), 271–274 (1990). [CrossRef]
  20. W. Ouerghui, J. Martinez-Pastor, J. Gomis, M. A. Maaref, D. Granados, J. M. Garcia, “Lateral carrier tunnelling in stacked In(Ga)As/GaAs quantum rings,” Eur. Phys. J. B 54(2), 217–223 (2006). [CrossRef]
  21. I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B 66(15), 155310 (2002). [CrossRef]
  22. P. Bigenwald, P. Lefebvre, T. Bretagnon, B. Gil, “Confined excitons in GaN-AlGaN quantum wells,” Phys. Status Solidi B 216(1), 371–374 (1999). [CrossRef]
  23. W. Stadler, D. M. Hofmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, K. W. Benz, “Optical investigations of defects in Cd1-xZnxTe,” Phys. Rev. B Condens. Matter 51(16), 10619–10630 (1995). [CrossRef] [PubMed]
  24. W. Z. Lee, G. W. Shu, J. S. Wang, J. L. Shen, C. A. Lin, W. H. Chang, R. C. Ruaan, W. C. Chou, H. C. Lu, Y. C. Lee, “Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots,” Nanotechnology 16(9), 1517–1521 (2005). [CrossRef]
  25. A. Cretí, M. Anni, M. Zavelani Rossi, G. Lanzani, G. Leo, F. Della Sala, L. Manna, M. Lomascolo, “Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: Role of the surface and interface defects,” Phys. Rev. B 72(12), 125346 (2005). [CrossRef]
  26. M. Colocci, A. Vinattieri, L. Lippi, F. Bogani, M. Rosa-Clot, S. Taddei, A. Bosacchi, S. Franchi, P. Frigeri, “Controlled tuning of the radiative lifetime in InAs self-assembled quantum dots through vertical ordering,” Appl. Phys. Lett. 74(4), 564–566 (1999). [CrossRef]
  27. M. Gurioli, A. Vinattieri, M. Zamfirescu, M. Colocci, S. Sanguinetti, R. Nötzel, “Recombination kinetics of InAs quantum dots: Role of thermalization in dark states,” Phys. Rev. B 73(8), 085302 (2006). [CrossRef]
  28. H. Gotoh, H. Ando, T. Takagahara, “Radiative recombination lifetime of excitons in thin quantum boxes,” J. Appl. Phys. 81(4), 1785–1789 (1997). [CrossRef]
  29. E. Harbord, P. Spencer, E. Clarke, R. Murray, “Radiative lifetimes in undoped and p-doped InAs/GaAs quantum dots,” Phys. Rev. B 80(19), 195312 (2009). [CrossRef]
  30. M. Gurioli, J. Martinez-Pastor, M. Colocci, C. Deparis, B. Chastaingt, J. Massies, “Thermal escape of carriers out of GaAs/AlxGa1-xAs quantum-well structures,” Phys. Rev. B Condens. Matter 46(11), 6922–6927 (1992). [CrossRef] [PubMed]
  31. G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007). [CrossRef]
  32. S. Rudin, T. L. Reinecke, B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B Condens. Matter 42(17), 11218–11231 (1990). [CrossRef] [PubMed]
  33. Y. I. Mazur, J. W. Tomm, V. Petrov, G. G. Tarasov, H. Kissel, C. Walther, Z. Y. Zhuchenko, W. T. Masselink, “Staircase-like spectral dependence of ground-state luminescence time constants in high-density InAs/GaAs quantum dots,” Appl. Phys. Lett. 78(21), 3214–3216 (2001). [CrossRef]
  34. L. Y. Karachinsky, S. Pellegrini, G. S. Buller, A. S. Shkolnik, N. Y. Gordeev, V. P. Evtikhiev, V. B. Novikov, “Time-resolved photoluminescence measurements of InAs self-assembled quantum dots grown on misorientated substrates,” Appl. Phys. Lett. 84(1), 7–9 (2004). [CrossRef]
  35. D. Chatterji, The Theory of Auger Transitions (Academic, 1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited