OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4144–4151

TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4144-4151 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1743 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Faraday isolator with compensation of thermally induced depolarization outside magnetic field was implemented for the first time on TGG ceramics. Stable isolation ratio of 38 dB in steady-state regime at a laser power of 300 W was demonstrated in experiment. Theoretical estimates show a feasibility of a device that would provide an isolation ratio higher than 30 dB up to laser power of 2kW.

© 2014 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(160.3820) Materials : Magneto-optical materials
(230.2240) Optical devices : Faraday effect
(230.3240) Optical devices : Isolators

ToC Category:
Optical Devices

Original Manuscript: December 16, 2013
Revised Manuscript: February 3, 2014
Manuscript Accepted: February 3, 2014
Published: February 14, 2014

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, "TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization," Opt. Express 22, 4144-4151 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. D. Orth, S. A. Payne, W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36(1), 75–116 (1996). [CrossRef]
  2. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008). [CrossRef] [PubMed]
  3. J. Chanteloup, D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photonics J. 3(2), 245–248 (2011). [CrossRef]
  4. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999). [CrossRef]
  5. W. Koechner, Solid-State Laser Engineering (Springer, 1999).
  6. N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, K. Mima, “10-kJ PW laser for the FIREX-I program,” J. Phys. IV France 133, 81–87 (2005).
  7. K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, A. A. Kaminskii, “Scalable ceramic lasers,” Laser Phys. 15, 927–938 (2005).
  8. J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000). [CrossRef]
  9. H. Lin, S. Zhou, H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011). [CrossRef]
  10. C. Chen, S. Zhou, H. Lin, Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012). [CrossRef]
  11. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007). [CrossRef] [PubMed]
  12. H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express 19(16), 15181–15187 (2011). [CrossRef] [PubMed]
  13. R. Yasuhara, H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013). [CrossRef] [PubMed]
  14. R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013). [CrossRef]
  15. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999). [CrossRef]
  16. E. A. Mironov, I. L. Snetkov, A. V. Voitovich, O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013). [CrossRef]
  17. E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41(15), 2947–2954 (2002). [CrossRef] [PubMed]
  18. I. L. Snetkov, I. Mukhin, O. Palashov, E. A. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011). [CrossRef] [PubMed]
  19. I. L. Snetkov, O. V. Palashov, “Compensation of thermal effects in Faraday isolator for high average power lasers,” Appl. Phys. B 109(2), 239–247 (2012). [CrossRef]
  20. M. A. Kagan, E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003). [CrossRef]
  21. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27(9), 716–718 (2002). [CrossRef] [PubMed]
  22. E. Khazanov, “Faraday isolators for high average power lasers,” in Advances in Solid State Lasers Development and Applications (INTECH, 2010), Chap. 3.
  23. A. G. Vyatkin, E. A. Khazanov, “Thermally induced scattering of radiation in laser ceramics with arbitrary grain size,” J. Opt. Soc. Am. B 29(12), 3307–3316 (2012). [CrossRef]
  24. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002). [CrossRef] [PubMed]
  25. W. Koechner, D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61(6), 758–766 (1971). [CrossRef]
  26. I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K.-i. Ueda, A. A. Kaminskii, “Study of the thermo-optical constants of Yb doped Y2O3, Lu2O3 and Sc2O3 ceramic materials,” Opt. Express 21(18), 21254–21263 (2013). [CrossRef] [PubMed]
  27. O. V. Palashov, I. B. Ievlev, E. A. Perevezentsev, E. V. Katin, E. A. Khazanov, “Cooling and thermal stabilisation of Faraday rotators in the temperature range 300 – 200 K using Peltier elements,” Quantum Electron. 41(9), 858–861 (2011). [CrossRef]
  28. M. A. Kagan, E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited