OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4180–4195

Coherence-controlled holographic microscopy in diffuse media

Martin Lošt’ák, Radim Chmelík, Michala Slabá, and Tomáš Slabý  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4180-4195 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (9218 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Low-coherence interferometric microscopy (LCIM) enables to image through scattering media by filtration of ballistic light from diffuse light. The filtration mechanism is called coherence gating. We show that coherence-controlled holographic microscope (CCHM), which belongs to LCIM, enables to image through scattering media not only with ballistic light but also with diffuse light. The theoretical model was created which derives the point spread function of CCHM for imaging through diffuse media both with ballistic and diffuse light. The results of the theoretical model were compared to the experimental results. In the experiment the resolution chart covered by a ground glass was imaged. The experimental results are in the good agreement with the theoretical results. It was shown both by experiments and the theoretical model, that with ballistic and diffuse light we can obtain images with diffraction limited resolution.

© 2014 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(110.4980) Imaging systems : Partial coherence in imaging
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.1790) Medical optics and biotechnology : Confocal microscopy
(180.3170) Microscopy : Interference microscopy
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:

Original Manuscript: August 29, 2013
Revised Manuscript: November 11, 2013
Manuscript Accepted: December 17, 2013
Published: February 18, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Martin Lošt’ák, Radim Chmelík, Michala Slabá, and Tomáš Slabý, "Coherence-controlled holographic microscopy in diffuse media," Opt. Express 22, 4180-4195 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988). [CrossRef]
  2. T. Wilson, Confocal Microscopy (Academic Press, 1990).
  3. M. Kempe, W. Rudolph, E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46–52 (1996). [CrossRef]
  4. M. Kempe, A. Genack, W. Rudolph, P. Dorn, “Ballistic and diffuse light detection in confocal and heterodyne imaging systems,” J. Opt. Soc. Am. A 14, 216–223 (1997). [CrossRef]
  5. J. M. Schmitt, A. Knüttel, M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 16(8) 2226–2235 (1994) [CrossRef]
  6. J. C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A 14(1) 275–279 (1997). [CrossRef]
  7. N. L. Patel, “Relative capacities of time-gated versus continuous-wave imaging to localize tissue embedded vessels with increasing depth,” J. Biomed. Opt. 15(1) 016015 (2010). [CrossRef]
  8. B. J. Tromberg, L. O. Svaasand, T. T. Tsay, R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32607–616 (1993). [CrossRef] [PubMed]
  9. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, 2007). [CrossRef]
  10. W. Rudolph, M. Kempe, “Trends in optical biomedical imaging,” J. Mod. Opt. 441617–1642 (1997). [CrossRef]
  11. E. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 521123–1128 (1962). [CrossRef]
  12. H. Kogelnik, “Holographic image projection through inhomogeneous media,” Bell Syst. Tech. J. 44, 2451–2455 (1965). [CrossRef]
  13. G. Indebetouw, P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25, 212–214 (2000). [CrossRef]
  14. E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992). [CrossRef]
  15. S. Tamano, Y. Hayasaki, N. Nishida, “Phase-shifting digital holography with a low-coherence light source for reconstruction of a digital relief object hidden behind a light-scattering medium,” Appl. Opt. 45, 953–959 (2006). [CrossRef] [PubMed]
  16. E. Leith, C. Kuei, “Interferometric method for imaging through inhomogeneities,” Opt. Lett. 12, 149–151 (1987). [CrossRef] [PubMed]
  17. P. Kolman, R. Chmelík, “Coherence-controlled holographic microscope,” Opt. Express 18, 21990–22003 (2010). [CrossRef] [PubMed]
  18. F. Dubois, C. Yourassowsky, O. Monnom, J. Legros, O Debeir, P. Van Ham, R. Kiss, C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006). [CrossRef] [PubMed]
  19. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  20. J. Izatt, M. Hee, G. Owen, E. Swanson, J. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994). [CrossRef] [PubMed]
  21. E. Leith, “Broad-source image plane holography as a confocal imaging process,” Appl. Opt. 33, 597–602 (1994). [CrossRef] [PubMed]
  22. Y. Cotte, M. F. Toy, N. Pavillon, C. Depeursinge, “Microscopy image resolution improvement by deconvolution of complex fields.,” Opt. Express 18, 19462–19478 (2010). [CrossRef] [PubMed]
  23. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge, “Marker-free phase nanoscopy,” Nature Photon. 7, 113–117 (2013). [CrossRef]
  24. M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, G. Popescu, “Visualizing Escherichia coli sub-cellular structure using sparse deconvolution spatial light interference tomography,” PLOS ONE 7, e39816 (2012). [CrossRef] [PubMed]
  25. M. Lošt’ák, P. Kolman, Z. Dostál, R. Chmelík, “Diffuse light imaging with a coherence controlled holographic microscope,” Proc. SPIE 7746, 77461N (2010). [CrossRef]
  26. T. Slabý, M. Antoš, Z. Dostál, P. Kolman, R. Chmelík, “Coherence-controlled holographic microscope,” Proc. SPIE 7746, 77461R (2010). [CrossRef]
  27. T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M. Lošt’ák, R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt. Express 21, 14747–14762 (2013). [CrossRef] [PubMed]
  28. R. Chmelík, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt. 53, 2673–2689 (2006). [CrossRef]
  29. E. N. Leith, B. J. Chang, “Space-invariant holography with quasi-coherent light,” Appl. Opt. 12, 1957—1963 (1973). [CrossRef] [PubMed]
  30. M. Born, E. Wolf, Principles of Optics, 7th expanded ed. (Cambridge University, 2002).
  31. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996)
  32. W. H. Press, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).
  33. C. N. Kurtz, “Transmittance characteristics of surface diffusers and the design of nearly band-limited binary diffusers,” J. Opt. Soc. Am. 62, 982–989 (1972). [CrossRef]
  34. R. B. Crane, “Use of a laser-produced speckle pattern to determine surface roughness,” J. Opt. Soc. Am. 60, 1658–1663 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited