OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4214–4223

Reconstructing signals via stochastic resonance generated by photorefractive two-wave mixing bistability

Guangzhan Cao, Hongjun Liu, Xuefeng Li, Nan Huang, and Qibing Sun  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4214-4223 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1543 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Stochastic resonance is theoretically investigated in an optical bistable system, which consists of a unidirectional ring cavity and a photorefractive two-wave mixer. It is found that the output properties of stochastic resonance are mainly determined by the applied noise, the crystal length and the applied electric field. The influences of these parameters on the stochastic resonance are also numerically analyzed via cross-correlation, which offers general guidelines for the optimization of recovering noise-hidden signals. A cross-correlation gain of 4 is obtained by optimizing these parameters. This provides a general method for reconstructing signals in nonlinear communications systems.

© 2014 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(190.0190) Nonlinear optics : Nonlinear optics
(190.1450) Nonlinear optics : Bistability
(190.7070) Nonlinear optics : Two-wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: October 29, 2013
Revised Manuscript: December 26, 2013
Manuscript Accepted: December 31, 2013
Published: February 18, 2014

Guangzhan Cao, Hongjun Liu, Xuefeng Li, Nan Huang, and Qibing Sun, "Reconstructing signals via stochastic resonance generated by photorefractive two-wave mixing bistability," Opt. Express 22, 4214-4223 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Chen, P. K. Varshney, S. M. Kay, J. H. Michels, “Theory of the stochastic resonance effect in signal detection: Part I—fixed detectors,” IEEE Trans. Signal Processing 55(7), 3172–3184 (2007). [CrossRef]
  2. R. Benzi, G. Parisi, A. Sutera, A. Vulpiani, “Stochastic resonance in climatic change,” Tellus 34(1), 10–16 (1982). [CrossRef]
  3. C. Nicolis, “Stochastic aspects of climatic transitions—response to a periodic forcing,” Tellus 34(1), 1–9 (1982). [CrossRef]
  4. S. Fauve, F. Heslot, “Stochastic resonance in a bistable system,” Phys. Lett. A 97(1–2), 5–7 (1983). [CrossRef]
  5. S. M. Bezrukov, I. Vodyanoy, “Stochastic resonance in non-dynamical systems without response thresholds,” Nature 385(6614), 319–321 (1997). [CrossRef] [PubMed]
  6. J. K. Douglass, L. Wilkens, E. Pantazelou, F. Moss, “Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance,” Nature 365(6444), 337–340 (1993). [CrossRef] [PubMed]
  7. A. R. Bulsara, T. C. Elston, C. R. Doering, S. B. Lowen, K. Lindenberg, “Cooperative behavior in periodically driven noisy integrate-fire models of neuronal dynamics,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), 3958–3969 (1996). [CrossRef] [PubMed]
  8. R. L. Badzey, P. Mohanty, “Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance,” Nature 437(7061), 995–998 (2005). [CrossRef] [PubMed]
  9. H. B. Chan, C. Stambaugh, “Fluctuation-enhanced frequency mixing in a nonlinear micromechanical oscillator,” Phys. Rev. B 73(22), 224301 (2006). [CrossRef]
  10. D. V. Dylov, J. W. Fleischer, “Nonlinear self-filtering of noisy images via dynamical stochastic resonance,” Nature 4, 323–328 (1993).
  11. F. Vaudelle, J. Gazengel, G. Rivoire, X. Godivier, F. Chapeau-Blondeau, “Stochastic resonance and noise-enhanced transmission of spatial signals in optics: the case of scattering,” J. Opt. Soc. Am. B 15(11), 2674–2680 (1998). [CrossRef]
  12. B. M. Jost, B. E. A. Saleh, “Signal-to-noise ratio improvement by stochastic resonance in a unidirectional photorefractive ring resonator,” Opt. Lett. 21(4), 287–289 (1996). [CrossRef] [PubMed]
  13. S. Weiss, B. Fischer, “Photorefractive saturable absorptive and dispersive optical bistability,” Opt. Commun. 70(6), 515–521 (1989). [CrossRef]
  14. R. Daisy, B. Fischer, “Optical bistability in a nonlinear - linear interface with two-wave mixing,” Opt. Lett. 17(12), 847–849 (1992). [CrossRef] [PubMed]
  15. R. Bartussek, P. Hänggi, P. Jung, “Stochastic resonance in optical bistable systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 49(5), 3930–3939 (1994). [CrossRef] [PubMed]
  16. L. Zhang, L. Cao, D. J. Wu, “Effect of correlated noises in an optical bistable system,” Phys. Rev. A 77(1), 015801 (2008). [CrossRef]
  17. M. Misono, T. Kohmoto, Y. Fukuda, M. Kunitomo, “Stochastic resonance in an optical bistable system driven by colored noise,” Opt. Commun. 152(4), 255–258 (1998). [CrossRef]
  18. J. E. Ford, J. Ma, Y. Fainman, S. H. Lee, “Multiplex holography in strontium barium niobate with applied field,” J. Opt. Soc. Am. B 9(7), 1183–1192 (1992).
  19. M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12–30 (1984).
  20. S. K. Kwong, M. C. Golomb, A. Yariv, “Oscillation with photorefractive gain,” IEEE J. Quantum Electron. 22(8), 1508–1523 (1986). [CrossRef]
  21. R. Bonifacio, L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18(3), 1129–1144 (1978). [CrossRef]
  22. P. Yeh, “Theory of unidirectional photorefractive ring oscillators,” J. Opt. Soc. Am. B 2(12), 1924–1928 (1985). [CrossRef]
  23. J. Ma, D. Zeng, H. Chen, “Spatial-temporal cross-correlation analysis: a new measure and a case study in infectious disease informatics,” in IEEE International Conference on Intelligence and Security Informatics (2006). [CrossRef]
  24. V. S. Anishchenko, M. A. Safonova, L. O. Chua, “Stochastic resonance in the nonautonomous Chua's circuit,” J. Circuits Syst. Comput. 3(2), 553–578 (1993). [CrossRef]
  25. B. Xu, Z. P. Jiang, X. Wu, and D. W. Repperger, “Theoretical analysis of image processing using parameter-tuning stochastic resonance technique,” in IEEE American Control Conference ACC'07 (2007), pp. 1747–1752. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited