OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4224–4234

Balanced homodyne readout for quantum limited gravitational wave detectors

Peter Fritschel, Matthew Evans, and Valery Frolov  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 4224-4234 (2014)
http://dx.doi.org/10.1364/OE.22.004224


View Full Text Article

Enhanced HTML    Acrobat PDF (958 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Balanced homodyne detection is typically used to measure quantum-noise-limited optical beams, including squeezed states of light, at audio-band frequencies. Current designs of advanced gravitational wave interferometers use some type of homodyne readout for signal detection, in part because of its compatibility with the use of squeezed light. The readout scheme used in Advanced LIGO, called DC readout, is however not a balanced detection scheme. Instead, the local oscillator field, generated from a dark fringe offset, co-propagates with the signal field at the anti-symmetric output of the beam splitter. This article examines the alternative of a true balanced homodyne detection for the readout of gravitational wave detectors such as Advanced LIGO. Several practical advantages of the balanced detection scheme are described.

© 2014 Optical Society of America

OCIS Codes
(000.2780) General : Gravity
(120.2920) Instrumentation, measurement, and metrology : Homodyning
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(270.5570) Quantum optics : Quantum detectors
(270.6570) Quantum optics : Squeezed states

ToC Category:
Detectors

History
Original Manuscript: November 6, 2013
Revised Manuscript: January 22, 2014
Manuscript Accepted: January 22, 2014
Published: February 18, 2014

Citation
Peter Fritschel, Matthew Evans, and Valery Frolov, "Balanced homodyne readout for quantum limited gravitational wave detectors," Opt. Express 22, 4224-4234 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-4224


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. LIGO Laboratory, LIGO web site: http://www.ligo.caltech.edu/
  2. Virgo Collaboration, Virgo web site: http://wwwcascina.virgo.infn.it/
  3. GEO600, GEO web site: http://geo600.aei.mpg.de/
  4. KAGRA, KAGRA web site: http://gwcenter.icrr.u-tokyo.ac.jp/en
  5. G. M. Harry, and The LIGO Scientific Collaboration, “Advanced LIGO: the next generation of gravitational wave detectors,” Classical Quantum Gravity 27(8), 084006 (2010). [CrossRef]
  6. Gravitational Wave International Committee (GWIC) Roadmap, 2010, https://gwic.ligo.org/roadmap/
  7. LIGO Scientific Collaboration, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Rep. Prog. Phys. 72(7), 076901 (2009). [CrossRef]
  8. T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. Slagmolen, S. J. Waldman, “DC readout experiment in Enhanced LIGO,” Classical Quantum Gravity, 29(6), 065005 (2012). [CrossRef]
  9. A. Buonanno, Y. Chen, N. Mavalvala, “Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme,” Phys. Rev. D 67(12), 122005 (2003). [CrossRef]
  10. D. E. McClelland, N. Mavalvala, Y. Chen, R. Schnabel, “Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors,” Laser Photonics Rev. 5, 677–696 (2011).
  11. LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7(12), 962–965 (2011). [CrossRef]
  12. LIGO Scientific Collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013). [CrossRef]
  13. W. Chaibi, F. Bondu, “Optomechanical issues in the gravitational wave detector Advanced VIRGO,” C. R. Phys. 12(9–10), 888–897 (2011). [CrossRef]
  14. R. Schnabel, N. Mavalvala, D. E. McClelland, P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1(8), 121 (2010). [CrossRef] [PubMed]
  15. The fact that gravitational wave detectors would benefit from this scheme is apparently clear to quantum optics researchers, as it appears to have been mistakenly assumed by: H. Müller-Ebhardt, H. Rehbein, C. Li, Y. Mino, K. Somiya, R. Schnabel, K. Danzmann, Y Chen, “Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors,” Phys. Rev. A 80(4), 043802 (2009). [CrossRef]
  16. B. J. Meers, K. A. Strain, “Modulation, signal, and quantum noise in interferometers,” Phys. Rev. A 44(7), 4693 (1991). [CrossRef] [PubMed]
  17. H. Kimble, Y. Levin, A. Matsko, K. Thorne, S. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65(2), 022002 (2001). [CrossRef]
  18. A. Buonanno, Y. Chen, “Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors,” Phys. Rev. D 64(4), 042006 (2001). [CrossRef]
  19. P. Purdue, Y. Chen, “Practical speed meter designs for quantum nondemolition gravitational-wave interferometers,” Phys. Rev. D 66(12), 122004 (2002). [CrossRef]
  20. J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, R. Schnabel, “Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors,” Phys. Rev. D 68(4), 042001 (2003). [CrossRef]
  21. F. Khalili, S. Danilishin, H. Müller-Ebhardt, H. Miao, Y. Chen, C. Zhao, “Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors,” Phys. Rev. D 83, 062003 (2011). [CrossRef]
  22. Suitable RF sidebands are already present in all modern interferometric gravitational wave detectors: P. Fritschel, R. Bork, G. Gonzalez, N. Mavalvala, D. Ouimette, H. Rong, D. Sigg, M. Zucker, “Readout and control of a power-recycled interferometric gravitational-wave antenna,” Appl. Opt. 40(28), 4988–4998 (2001). [CrossRef]
  23. H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013). [CrossRef] [PubMed]
  24. K. McKenzie, M. B. Gray, P. K. Lam, D. E. McClelland, “Technical limitations to homodyne detection at audio frequencies,” Appl. Opt. 46, 3389–3395 (2007). [CrossRef] [PubMed]
  25. M. S. Stefszky, C. M. Mow-Lowry, S. S. Y Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Classical Quantum Gravity 29(14), 145015 (2012). [CrossRef]
  26. N. Smith-Lefebvre, S. Ballmer, M. Evans, S. J. Waldman, K. Kawabe, V. Frolov, N. Mavalvala, “Optimal alignment sensing of a readout mode cleaner cavity,” Opt. Lett. 36(22), 4365–4367 (2011). [CrossRef] [PubMed]
  27. P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–920 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited